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Abstract

This paper develops a monitoring and forecasting model for the aggregate monthly

number of commercial bank failures in the U.S. We extract key sectoral predictors from

the large set of macroeconomic variables proposed by McCracken and Ng (2016) and

incorporate them in a hurdle negative binomial (HNB) model to predict the number of

monthly commercial bank failures. Our in-sample analysis uncovers a significant and

robust relationship between the predictor related to the housing sector and the occur-

rence of bank failures, suggesting the importance of the link between developments

in that sector and banking vulnerabilities. Out-of-sample exercices, conducted by se-

quentially re-estimating our HNB model at every step using the real-time vintages of

the McCracken and Ng (2016) data, confirm the value of our forecasting approach,

which outperforms other alternatives.
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1 Introduction

Banking crises and other episodes of financial market distress have important macroe-

conomic consequences: they disrupt the flow of credit, raise the risks of corporate and

personal failures, lead to output losses relative to trend and to sharp declines in tax rev-

enues and the fiscal health of governments. The 2007-2009 crisis has reaffirmed this fact

and caused significant worldwide economic damage.1

Considering the costs they generate, an important body of work has sought to an-

alyze banking crises and identify “early warning” variables –key factors associated with

heightened crisis probabilities– forecasting future crisis occurences. This body of work,

originating in contributions such as Demirgüç-Kunt and Detragiache (1998), Kaminsky

and Reinhart (1999) or Borio and Lowe (2002), has been energized by the 2007-2009

events and has since grown considerably.2

This paper provides an original and complementary contribution to the literature

studying banking crises. We develop a count-data framework to model the monthly aggre-

gate number of bank failures in the United States and assess its out-of-sample forecasting

ability. Specifically, we employ a hurdle-negative binomial (HNB) model, an extension

of the standard Poisson count-data process designed to accommodate high frequencies of

zero counts (the absence of bank failures in a given month for our data) and the high

dispersion in the number of such failures, when they do occur. Our explanatory variables

are factors extracted from the several dozen time-series in the McCracken and Ng (2016)

database, in accordance with the literature showing how a few predictors summarizing

information contained in a large number of variables can outperform other forecasting

approches (Stock and Watson, 2002a,b, 2006; Bai and Ng, 2008, 2009).

Our in-sample results demontrate that the HNB model outperforms alternatives like

the standard Poisson counterpart. It also shows that the factor related to the housing

industry block in the McCracken and Ng (2016) database contains the most robust, sta-

tistically and economically meaningful information about the future occurrence of bank

failures. This echoes findings in related research showing links between the housing sector

and banking industry disruptions (Barrell et al., 2010; Bernanke, 2013; Ghosh, 2015). It

1Reinhart and Rogoff (2013) and Laeven and Valencia (2013) present assessments of the fiscal conse-

quences of banking crises. In addition, Laeven and Valencia (2013) document the extent to which economies

suffer output and bank equity losses following such crises. See also Hutchison and McDill (1999) for an

exploration of the consequences of Japanese banking crises.
2A non-exhaustive review of recent contributions includes Bussiere and Fratzscher (2006), Davis and

Karim (2008), Borio and Lowe (2009), Barrell et al. (2010), Barrell et al. (2010), Duca and Peltonen (2013),

Betz et al. (2014), Gogas et al. (2018) or Antunes et al. (2018).
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also accords well with intuitive links between the boom-and-bust cycles in housing and

the health of the banking sector, with the boom featuring rising home values, loosening of

lending and refinancing terms and rising bank exposure to loan defaults and the bust, by

contrast, being characterized by house price decreases, households, increases in mortgage

delinquencies or defaults, and hightened bank vulnerabilities.

Next, we assess the out-of-sample forecasting ability of our approach as follows. We

extract factors and estimate our model on the sample 1975M1− 1999M12 using the real-

time vintages of the McCracken and Ng (2016) database and then forecast the number of

bank failures for up to twelve months ahead. We repeat this procedure using expanding

windows of data (one new observation each month), recomputing the factors at each step

using the appropriate data vintage. We then repeat this analysis for a variety of alternative

models. We document that our HNB framework has the best forecasting ability at all

horizons and that most of these superior performances are statistically signifiant according

to the Diebold and Mariano (1995) test.

Our approach is a contribution to the general research on banking crises and as such

offers three potential advantages to more conventional strategies in that literature. First,

using the aggregate number of bank failures as the proxy for crises provides an interesting

alternative to measures used elsewhere.3 Second, the monthly frequency of our framework

can provide regulatory authorities early insights about developing financial vulnerabilities,

relative to other work using annual data on bank failures (Davutyan, 1989). Finally, a

framework to monitor and forecast the aggregate occurrence of bank failures in the United

States is important in its own right, particularly for institutions such as the Federal Deposit

Insurance Corporation (FDIC) mandated with such monitoring responsibilities.

The rest of this paper is organized as follows. Section 2 briefly reviews the literature

on the determinants of bank failures and other forms of banking-sector distress. Section 3

describes the data used in our contribution. Section 4 presents the econometric framework

and Section 5 the results. Section 6 concludes.

3How to actually measure banking crises is a recurring challenge. The database of Laeven and Valencia

(2013) notes banking crises with dummy variables indicating “significant signs” of financial distress in

banking systems (bank runs, losses and bank liquidations) or “significant banking policy interventions”.

This is related to Reinhart and Rogoff (2013)’s measure where a bank run or a government assistance

to banks (closure, merging and other large-scale regulatory actions) defines crises. Other measures add

additional distress signals –such as nonperforming banking assets– to define crises (Demirgüç-Kunt and

Detragiache, 1998, 2005).
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2 Monitoring and forecasting bank failures

Monitoring financial systems is one key task of regulatory authorities and has typically fo-

cused on bank-specific, industry-specific and macroeconomic determinants of bank failure.

We hereafter briefly review these areas of analysis.

Poor management is seen as playing the major role among bank-specific factors leading

to bank failures (Berger and DeYoung, 1997; Salas and Saurina, 2002; Podpiera and Weill,

2008). Profit-seeking incentives may sometimes encourage bank managers to take inno-

vative actions that result in poor credit scoring, spurious collateral appraisal, inadequate

borrowers monitoring and subpar overall loan quality. A lack of diversification in such

activities may also exacerbate these problems, with diversification usually proxied by the

proportion of non-interest income as a share of total income and expected to to be nega-

tively related to non-performing loans. Finally, insufficient loan loss provisions may reflect

the overall disinterest of banks towards risks control as increases in such provisions could

be perceived by investors and shareholders as signals of trouble and bad management.

Researchers have also identified important industry-specific factors driving bank fail-

ures, related to monetary policy or to banking regulation (Keeton, 1999; Bernanke, 2013).

An over-accommodating monetary policy stance characterized by low interest rates and

growing money supply may be associated with rapid expansions of credit and subsequent

deterioration in credit-allocation standards. In addition, weak banking regulation, such as

low capital requirements in a competitive industry as well as generous deposit insurance,

may encourage banks managers to take on too much risk. A lively ongoing debate about

the impacts of deposit insurance and the role of central banks as lenders of last resort dur-

ing times of financial system instability is exemplified by contributions in Boyd and Gertler

(1994), Stern and Feldman (2004), Ennis and Malek (2005) or Bernanke (2013). Insuffi-

cient banking regulation may be exacerbated by the inability of regulators to adequately

monitor banking activities. Development of sophisticated financial instruments also add

difficulties to the supervision of the banking industry by the regulatory authorities.

Finally, aggregate macro-financial factors also play a key role in financial system stabil-

ity (Demirgüç-Kunt and Detragiache, 1998; Kaminsky and Reinhart, 1999; Louzis et al.,

2012). Sustained output growth and well-anchored inflation are generally positively as-

sociated with banking system stability. Low unemployment rate and dynamic housing

industry foster booms in banking activities. Breuer (2006) suggests that other national

factors such as corruption may also be important.
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3 Data

As stated above, this paper’s goal is to provide a workable forecasting tool for the aggregate

monthly number of commercial bank failures in the United States. To this end, we analyze

monthly-frequency data on bank failures and relate them to the information contained in

the McCracken and Ng (2016) dataset, which comprises a large set of macro-financial

explanatory variables and is updated on a timely basis.4 In addition, our out-of-sample

experiment employs the real-time vintages of the McCracken and Ng (2016) dataset, which

reflect the information historically available at each given period of time.

3.1 The monthly number of bank failures

Our variable of interest is the monthly number of bank failures and assistances reported

by the Federal Deposit Insurance Corporation (FDIC).5 A bank failure is defined as the

closing of a financial institution by its chartering authority, while an assistance pertains to

a situation where a failing institution is acquired by another (healthy) institution, possibly

with financial assistance from the FDIC.

Figure 1 illustrates the evolution of the US banking industry between 1975 and 2017.

As depicted in Panel (a) of the figure, more than 14,000 commercial banks were operating

in the United States in the mid 1970s, largely as a result of strict regulations on branching.

In the 1980s, progressive easements in branching regulation induced waves of mergers and

the number of banks with no branch steadily decreased whereas the number of banks with

branches increased till the late 1980s (but has slowly declined since). These two effects

combined to create a a significant downward trend in the total number of commercial

banks in the United States.

Next, panel (b) of Figure 1 provides the data on failures, assistances and mergers.

The evolution of failures and assistances clearly depict the two major disruptive episodes

experienced by the U.S. banking system over the last 40 years, namely the Savings and

Loans crisis (late 1980’s) and the subprime crisis (2007-2009).

Figure 2 scrutinizes further the monthly number of bank failures and assistances, by de-

picting the level –Panel (a)– and the ratio of bank failures and assistances to the beginning-

of-the year number of banks, Panel (b). The magnitude of the 2007-2009 subprime crisis

4See De Nicolo and Lucceta (2016), Smeekes and Wijler (2018) or Forni et al. (2018), among others,

for recent uses of the McCracken and Ng (2016) dataset in forecasting.
5As the primary deposit insurance provider for US banks, the FDIC supervises both federally-chartered

banks as well as most of their state-chartered counterparts. Each insured bank must report to the FDIC

and the agency is involved in the majority of proceedings arising from bank failures or assistances.
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Figure 1: Evolution of the U.S. banking industry: 1975 - 2018
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Notes: Data on the U.S. banking industry are expressed in levels and sourced from the Federal Deposit

Insurance Corporation. Panel (a) depicts the progressive concentration of the U.S. banking industry.

Panel (b) reports mergers as well as failures and assistances of U.S. banks.

naturally appears slightly amplified when bank failures are reported as a proportion of

the total number of banks, but the evolution of the two measures appears very similar.

Our work below emphasizes the number of bank failures but could be extended to the

proportion of bank failures. The within-sample analysis of the same data contained in

Gnagne and Moran (2018) suggests however that results would be similar.
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Figure 2: U.S. bank failures and assistances (in levels and in proportion of total)
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Table 1: U.S. bank failures and assistances: descriptive statistics

Period Nb. of Failures Monthly Mean Std. Dev.

1975 - 1984 438 3.65 4.12

1985 - 1994 2550 21.25 20.92

1995 - 2004 55 0.46 0.66

2005 - 2014 524 4.37 5.61

2015 - 2018 21 0.44 0.68

1975- 2018 3588 6.80 13.19

Source: FDIC

Table 1 provides additional information about the process of bank failures. From 1975

to 2018, the U.S. banking system experienced an average of almost seven bank failures each

month, but that average masks significant fluctuations. Indeed the two distress episodes

(the Savings and Loans and subprime crises) are clearly perceivable and the table shows

that the period 1985-1994 saw an average of more than 21 banks failures each month
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whereas the corresponding figure for the period 2005-2013 was only about 5 failures a

month. Signs of overdispersion, wherein the variance of count data is higher than its

mean are visible, particularly during the distress episodes.

Figure 3: Histogram of the monthly number of U.S. bank failures and assistances
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Note: Total monhtly number of bank failures and assistances in the U.S: the x-axis reports the

number of bank failures and the y-axis the number of months in the 1975-2018 sample during

which a corresponding number of bank failures occurred. Data are from FDIC.

Figure 3 depicts an alternative representation of the data, via a histogram showing the

number of failures on the x-axis and the number of months during which the corresponding

number of bank failures occurred. The figure shows that bank failures remain a relatively

rare event: nearly 200 months in our sample experienced no bank failure. Conversely, the

distress episodes imply that a relatively fat tail is present, with some months experiencing

high numbers of failures: in March 1989, for instance, 175 banks went into bankruptcy. Our

dependent variable is thus characterized by a large proportion of zeroes and overdispersion,

features that our econometric strategy will take into account.

3.2 Explanatory Variables

McCracken and Ng (2016) propose a comprehensive, easily accessible and regularly up-

dated database containing several dozen macroeconomic time series for the United States,
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organized by sectors. They aim to provide a convenient starting point for research on the

forecasting ability of large datasets. Additionally, they provide real-time vintages of these

data, allowing a better picture of the information available at specific moments of time.

Our out-of-sample experiments below make use of the vintages when assessing the ability

of our framework to forecast bank failures.

The database we use thus contains 131 different variables observed at a monthly fre-

quency over the sample 1975M1 - 2018M12, where in accordance with McCracken and Ng

(2016) all series have been transformed to induce a weakly stationary behaviour. Most

I(1) series are therefore used in first difference of logarithms. The monthly frequency of

these data has the potential to help identify occurrence of banking difficulties in a timely

manner.

The large number of variables in the database ensures one can take advantage of the

largest amount of available relevant information. Considering the large number of vari-

ables however, a procedure by which the dimension of the estimation is reduced becomes

necessary and our analysis via principal components is designed to achieve this, through

the use of one predictor extraced from each sector of the larger database.

4 Econometric Framework

4.1 Predictors

A large literature has shown that the efficient use of the information contained in several

dozen time series can make significant contributions to forecasting. In this context, ex-

tracting a few latent factors summarizing the common sources of variability in these large

datasets, and then using these factors as predictors has been shown to provide significant

forecasting ability in a wide variety of settings and is now a standard part of the fore-

caster’s toolkit. These methods have, however, been used more sparingly in the banking

literature and one importante innovation of the present paper is to use this approach to

identify predictors for the number of bank failures.6

Specifically, we extract the principal components of each group (or sector) of variables

in the McCracken and Ng (2016) dataset and then use the first principal component from

each sector as the predictor summarizing its information contribution for forecasting bank

6Factor modeling for forecasting was popularized by Stock and Watson (2002a,b) and essential contri-

butions in this field include Forni et al. (2005), Boivin and Ng (2006), Bai and Ng (2008) and Bai and Ng

(2009). Stock and Watson (2006) reviews the literature.
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failures.7 Concretely, denote Xj as the data matrix for the Nj time series in sector j (one

of the 8 present in our dataset); the principal component decomposition of Xj will uncover

F
j
i , i = 1, . . . , Nj components with each F

j
i a linear combination of the underlying data,

such that

F
j
i = Xjci, (1)

with ci the ith eigenvector associated to the variance-covariance or correlation matrix

of Xj . We then keep F
j
1
, the first principal component of sector i, as summarizing the

information contained in that sector.

The strategy whereby we extract one predictor for each sector of the McCracken and

Ng (2016) dataset is meant to provide some economic intuition for the likely source of a

predictor’s value-added to forecasting. In our analysis, this means that the grouping of

variables under the sector “Housing” from McCracken and Ng (2016), consisting of various

data on housing starts or building permits in the United States, is best synthetized as one

variable related to the general health of the housing market in the United States.8 An

alternative strategy would be to search for the factor within that sector that has the

most promising forecasting ability instead of selecting the first principal component (Bai

and Ng, 2009). However, a comparison between these two strategies, conducted from the

viewpoint of the within-sample exercises in Gnagne and Moran (2018), suggests that they

would offer comparable performance.

4.2 Model

We now present the econometric strategy we follow to analyze the monthly occurrence of

aggregate commercial bank failures in the United States. We first discuss the standard

Poisson model often used as a starting point in the count data literature, before introducing

refinements to this model aimed at accommodating data features such as overdispersion

and excess zero counts.

7Principal components analysis is the tool most often used to extract factors from a large dataset (Stock

and Watson, 2006). It is a multivariate statistical procedure that transforms a set of N correlated variables

into a new set of N principal components, linear combinations of the original variables that are orthogonal

to each other and form a basis on which the observations are projected. Principal components are ordered

in that the first principal component explains the largest fraction of the overall covariance of the N original

variables. For extensive discussion, see Jolliffe (1986) or Abdi and Williams (2010).
8The strategy ressembles that of Boivin and Giannoni (2006), where the authors consider that a variable

in a highly-aggregated quantitative model, say consumption, is best represented as a factor drawn from

several timeseries related to the concept of consumption.
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4.2.1 Standard Poisson Model

The Poisson distribution generally represents the starting point in modeling count data.

Its probability mass function (p.m.f) is given by:

fYt
(yt) =

e−λtλ
yt
t

yt!
, (2)

where yt represents the realization of a count variable of interest Yt (the number of bank

failures during month t in our case) and λt is the corresponding mean and variance, as

both coincide in the standard model:

E[Yt] = V [Yt] = λt. (3)

The standard Poisson regression model uses (3) to relate predictors to the conditional

mean of yt via the following:

E[Yt|Xt] = λt = exp(X ′
tβ), (4)

with Xt the vector of predictors and β the vector of associated parameters.

This framework has been used to analyze the determinants of health services demand,

insurance and accident claims and several other types of count data; see Cameron and

Trivedi (2013) for a survey. It has, however, seldom been applied to the study of bank

failures, with the notable exception of Davutyan (1989). Davutyan’s analysis, however,

studies the annual count of bank failures; by contrast, our analysis pertains to the monthly

count of bank failures, an arguably more relevant objective for policy purposes. However,

the standard Poisson regression model cannot be applied successfully to all count data

analysis. Notably, features such as overdispersion (where the variance exceeds the mean)

and excess zero-counts are at odds with the implications of the standard model. We now

discuss extensions of the standard model designed to accommodate these features.

4.2.2 The Negative Binomial Model

Equidispersion, a feature of the standard Poisson model, refers to the equality of the

mean and the variance of a count data variable of interest. By constrast, overdispersion

(underdispersion) occurs when this property is violated and the variance exceeds (is less

than) the mean. One class of count data model that can account for dispersion is the

negative binomial (NB) model. Negative binomial models relax the strict assumption

of equality of mean and variance and instead work with models admitting the following
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relationship between the conditional mean and the conditional variance of the variable of

interest:

V [Yt] = λt +
λ
p
t

α
, p ∈ R, (5)

where the two most common parameterizations specify p = 1 or p = 2. In the latter case,

the expression thus becomes

V [Yt] = λt +
λ2
t

α
, (6)

and α is an overdispersion parameter to be estimated. This specification is the NegBin2

model discussed in Cameron and Trivedi (2013) and the one we use below.9

4.2.3 The Hurdle Negative Binomial Model

Hurdle models were introduced by Mullahy (1986) and are designed to handle count data

featuring excess zeros and overdispersion. These two-part models specify a process for

the zero counts (the absence of bank failures in our case) that is different from the pro-

cess for the positive counts (the number of bank failures when occurring). An economic

interpretation of this structure could therefore be that two regimes can affect banking

activities, namely normal times, for which k = 0, and abnormal times with increasing

severity according to which k = 1, 2, ....

More specifically, let f1(0) denote the probability that yt takes a zero value and f2(k),

a truncated p.m.f. governing the intensity for values greater than zero (k = 1, 2, ...). Note

that the two distributions functions underlying these probabilities are not constrained to

be the same processes and/or to depend on the same predictors. The distribution of such

a “hurdle-at-zero” model is given by:

fYt
(yt = k) =















f1(0), k = 0,

(1− f1(0))f2(k)

1− f2(0)
, k = 1, 2, ...

(7)

where f1(·) and f2(·) then depend on the various predictors examined; f2(·) is typically

defined as a Poisson or negative binomial model, while f1(·) can be a binomial or a

9Note that (6) is obtained by introducing an idiosyncratic, unobserved and multiplicative disturbance

ǫ in the standard model, so that the p.d.f. now reads

fYt
(yt) =

e−λtǫt (λtǫt)
yt

yt!
,

and then assuming a Gamma distribution for ǫ and solving for the unconditional first moments for y, which

implies the relationship between V [Yt] and E[Yt] expressed in (6). See Cameron and Trivedi (2013) for

details.
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geometric model. The expected value arising from (7) is

E(Yt) =
(1− f1(0))

1− f2(0)

∞
∑

k=1

kf2(k), (8)

while the variance obeys

V ar(Yt) =
(1− f1(0))

1− f2(0)

∞
∑

k=1

k2f2(k)−

[

(1− f1(0))

1− f2(0)

∞
∑

k=1

kf2(k)

]2

. (9)

Parameters of hurdle models are estimated with maximum likelihood and the log-

likelihood function (L) of a hurdle-at-zero model is expressed as follows:

L =

T
∑

t=1

I{yt=0}logf1(0; θ1,t)+ I{yt>0}log(1−f1(0; θ1,t))+

n
∑

t=1

I{yt>0}log
f2(yt; θ2,t)

1− f2(0; θ2,t)
(10)

with θ1,t = {Xt, β1}, θ2,t = {Xt, β2}, T the number of observations and β1 and β2 the

parameter vectors associated to f1 and f2, respectively.

The specific assumptions this paper employs are as follows. Our benchmark model fore-

casts the future number of bank failures using the hurdle-with-negative-binomial (HNB)

model (7), where the binomial function (f1) governs the process generating the zeros and

the negative binomial distributions explains the positive counts (f2): the “hurdle-at-zero”

feature is designed to capture the high occurrence of zeros noticed in Figure (3), while the

negative binomial aspect seeks to address the high dispersion of positive counts. The vec-

tor of explanatory variables Xt consists of the principal components (or factors) extracted

for the entire McCracken and Ng (2016) dataset.10

Recall that the distribution function of a binomial distribution is

f1(s;n, ps) =
n!

s!(n− s)!
prs(1− ps)

n−s, (11)

with n the number of trials, ps the success probability for each trial and s the number of

success. We posit a logit function for the binomial regression so that the probability ps of

success for each trial (the presence of non-zero bank failures for that month) is related to

our predictors in the following manner:

log(
ps

1− ps
) = X′

tβ. (12)

10A related strategy to address high counts of zeros is known as the zero-inflated model (Cameron and

Trivedi, 2013). It considers that zeros can arise either from the occurrence of Regime 1, which always

results in a zero-count, or from Regime 2, a standard count model which includes the possibility of zeros.

The in-sample analysis provided in Gnagne and Moran (2018) suggests that the forecasting potential of

the two frameworks are similar.
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5 Results

This section presents our main results. It first reports on in-sample experiments –estimations

obtained using the full sample available– conducted to showcase the potential of our

Hurdle-with-negative-binomial (HNB) model. These results also suggest that the fac-

tor associated with the housing-industry block of variables in McCracken and Ng (2016)

is associated with that favorable performance. Second we document how the HNB model

outperforms alternatives in out-of-sample forecsting exercises, using the real-time vintages

of the data from McCracken and Ng (2016).

5.1 In-sample Estimation

Table 2 reports estimation results for the standard Poisson model and the HNB variant.

These results are obtained by using the largest workable sample (1975M1-2018M12). For

each model, the variable to be explained is the future number of bank failures (we re-

port results for the one-month, three-month and twelve-month-aheads horizons) while the

predictors consist of one principal component for each sector. Recall that two probabil-

ity functions are specified in the HNB model, f1(·) and f2(·), where the first controls

zero-counts –the absence of bank failures– while the other governs positive counts ie. the

intensity of bank failures when present. As such, two sets of parameter estimates are

reported.

The first standout result in Table 2 is the robust significance of the predictor associated

with the housing sector. Interestingly, it is for the extensive margin of the HNB model

–the presence or not of bank failures– that this variable is the most robustly significant. As

such, the health of the housing industry, as represented by that variable, might be key to

forecast the future presence of an episode of bank distress. Other sector-specific predictors

do not exhibit an equivalent robustness: the predictor associated with the ‘Orders’ group

of variables is notably significant for the Poisson process but not the HNB extensions. A

few other sectoral variables appear statistically significant through the lens of the standard

Poisson model, only to lose that significance when assessed using the HNB model.11

Second, Table 2 suggests that the HNB model has the better overall performance. All

three classical measures of model performance reported, the log likelihood, the Akaike

Information criterion (AIC) and the Bayesian Information criterion (BIC) clearly favour

the HNB model. Our out-of-sample experiments below confirm this suggestion.

11Recall however that factors are identifiable only up to a square matrix and as such interpretation of

their sign may be misleading.
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Table 2: In-sample Estimation Results

Predicting at t+ 1 month-ahead t+ 3 months-ahead t+ 12 months-ahead

Poisson HNB Poisson HNB Poisson HNB

Zeros NB2 Zeros NB2 Zeros NB2

Output/Income −0.02 −0.25 0.06 −0.15∗∗∗ −0.08 −0.28 0.05 0.16 −0.06

Labor Market −0.06 0.01 0.12 0.28∗∗∗ 0.06 0.48∗ 0.03 0.01 0.36

Housing Industry 0.19∗∗∗ 0.84∗∗∗ −0.06 0.15∗∗∗ 0.89∗∗∗ −0.16 0.04∗∗ 0.88∗∗∗ −0.32∗∗

Orders 0.20∗∗∗ −0.06 0.12 −0.20∗∗∗ −0.19 −0.11 0.00 −0.03 −0.02

Money & Credit 0.28∗∗∗ 0.14 0.30 0.00 0.02 0.13 −0.05 −0.01 −0.08

Int & Exch. Rate 0.07∗∗ 0.20 0.01 0.01 0.23 −0.06 0.09∗∗∗ 0.18 0.08

Prices 0.08∗∗∗ 0.09 0.09 0.01 −0.05 0.01 0.01 −0.08 0.01

Stock Market −0.12∗∗∗ −0.04 −0.07 0.04 0.04 −0.04 −0.04∗ 0.09 −0.05

−Log Likelihood 3796 1314 3805 1308 3821 1297

AIC 7610 2667 7629 2655 7660 2633

BIC 7649 2748 7667 2736 7698 2713

Symbols ∗,∗∗ and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level.

Next, Table 3 repeats this analysis within a model where six lagged values of the

dependent variable have been added as potential predictors. The facts documented above

in Section 3, notably the tendency of bank failures to occur during a limited number of

multi-months bank distress episodes, suggest that the explanatory power of the lagged

number of bank failures ought to be assessed.12 Indeed the table shows that these lagged

values have statistically-significant explanatory power in many cases. However, this occurs

mostly for the standard Poisson model, whereas the HNB model appears to have less need

for these additional predictors. As was the case in Table 2 above, the housing industry is a

key source of explanatory power for the model, notably for the extensive component (the

presence or not of bank failures) of the HNB model. Further, all three criteria continue

to strongly favour the HNB model.

12Gnagne and Moran (2018) present further analysis of the explanatory power arising from the lagged

values of the dependent variable, in addition to several other explorations of the in-sample performance of

our framework.
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Table 3: In-sample Estimation Results: Model with Lagged Bank Failures

Predicting at t+ 1 month-ahead t+ 3 months-ahead t+ 12 months-ahead

Poisson HNB Poisson HNB Poisson HNB

Zeros NB2 Zeros NB2 Zeros NB2

Explanatory Variables

Output/Income −0.03 −0.22 0.10 −0.17∗∗∗ 0.05 −0.04 0.11∗∗∗ 0.29 0.18

Labor Market −0.19∗∗∗ 0.35 −0.02 0.20∗∗∗ 0.52 0.14 0.04 0.37 0.29

Housing Industry 0.19∗∗∗ 0.36∗ 0.08 0.13∗∗∗ 0.54∗∗∗ 0.04 −0.01 0.73∗∗∗ −0.14∗

Orders 0.12∗∗∗ −0.03 −0.08 −0.26∗∗∗ −0.44 −0.04 −0.09∗∗ −0.02 −0.15

Money & Credit 0.46∗∗∗ −0.02 0.14 0.06 −0.22 0.02 −0.02 −0.15 −0.09

Int & Exch. Rate 0.21∗∗∗ −0.20 0.21∗ 0.07 −0.19 0.10 0.15∗∗∗ −0.20 0.11

Prices 0.13∗∗∗ 0.11 0.04 0.03 −0.05 0.04 0.01 −0.08 0.04

Stock Market −0.07∗∗∗ −0.06 0.02 0.02 0.03 −0.01 0.06∗∗ 0.20 0.08

Lagged Response Variable

Bank Failures (t) 0.02∗∗∗ 0.23∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.19∗ 0.02∗∗ 0.01∗∗∗ 0.34∗∗∗ 0.04∗∗∗

Bank Failures (t− 1) 0.01∗∗∗ 0.12 0.00 0.01∗∗∗ 0.23∗ 0.01 0.01∗∗∗ 0.10 0.01

Bank Failures (t− 2) 0.01∗∗∗ 0.12 0.01∗ 0.01∗∗∗ 0.12 0.01 0.01∗∗∗ −0.03 0.01

Bank Failures (t− 3) 0.01∗∗∗ 0.26∗∗ 0.01 0.01∗∗∗ 0.12 0.02 0.01∗∗∗ 0.02 0.02

Bank Failures (t− 4) 0.01∗∗∗ 0.13 0.01 0.01∗∗∗ −0.10 0.02∗ 0.00∗∗∗ −0.06 0.00

Bank Failures (t− 5) 0.01∗∗∗ 0.12 0.02∗∗ 0.01∗∗∗ 0.09 0.03∗∗∗ 0.01∗∗∗ 0.01 0.01

Bank Failures (t− 6) 0.01 −0.04 0.01∗ 0.01∗∗∗ 0.19∗ 0.02∗∗ 0.01∗∗∗ 0.04 0.01

−Log Likelihood 2039 1057 2194 1068 2436 1108

AIC 4110 2180 4420 2202 4904 2282

BIC 4178 2320 4488 2342 4971 2421

Symbols ∗,∗∗ and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level.

5.2 Out-of-Sample Experiments

5.2.1 The Experiment

The forecasting experiment we conduct is as follows. We consider the hurdle-with-negative-

binomial (HNB) model with one pricnipal component/factor per group of variables (using

the real-time version of the McCracken and Ng (2016) data for that date) as our bench-

mark; the set of explanatory variables Xt thus consists of 8 variables. We start with the

sample 1975M1 − 1999M12, estimate the model’s coefficients and use them to provide

forecasts for the future number of bank failures up to twelve months ahead, from 2000M1

to 2000M12. The procedure is repeated with an expanding window of data (one new
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observation each month) and recomputing the principal components at each step using

the updated real-time McCracken and Ng (2016) data. At the end of the procedure, we

thus have twelve time series (one- to twelve-months-ahead forecasts) covering the period

2000M1 to 2018M12. Table 4 summarizes the experiment’s structure.

We then repeat this exercise firstly for the standard Poisson model and then versions

of the HNB and standard Poisson model with lagged values of the dependent variable as

additionnal predictors. We also assess different (competing) models, versions of the Poisson

and the HNB model with two factors (principal component) per sector and, squared factors

(one per sector) to accommodate possible non-linearities (Bai and Ng, 2008).

Table 4: The Forecasting Experiment (2000 - 2018)

Estimation Sample Forecast h months ahead

h = 1 h = 2 h = 3 · · · h = 12

1975M1 −→ 1999M12 2000M1 2000M2 2000M3 · · · 2000M12

1975M1 −→ 2000M1 2000M2 2000M3 2000M4 · · · 2001M1

1975M1 −→ 2000M2 2000M3 2000M4 2000M5 · · · 2001M2
...

...
...

...
...

...

1975M1 −→ 20017M11 2017M12 2018M1 2018M2 · · · 2018M11

1975M1 −→ 20017M12 2018M1 2018M2 2018M3 · · · 2018M12

Note: Structure of the forecasting experiment: for each period, the underlying principal components

predictors are computed using the real-time data available at the time according to the McCracken and

Ng (2016) database.

5.2.2 Results

A first indicator of the superior forecasting ability of the HNB model is represented in

Figure 4. The figure reports the root-mean-squared and mean-absolute errors across the 12

forecasting horizons considered in the exercise, for the standard Poisson model (diamonds)

and our HNB framework (squares), in the case where no lagged values of the dependent

variable are used. The figure’s main takeaway is that the HNB model appears to be a

better forecasting framework for all horizons considered, an impression validated by the

formal tests conducted below.

Figures 5 and 6 depict these results through an alternative angle. In each of these two

figures, the predicted and (eventually) realized number of bank failures are charted side-
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Figure 4: Forecasting performance: 2000- 2018
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Note: RMSEs (left-panel) and MAEs (right-panel) resulting from the 2000-2018 real-time forecasting

experiment, standard Poisson and HNB models. X-axis represents the forecasting horizons and Y-axis the

forecasting performance measure in units.

by-side for different forecasting horizons, with the standard Poisson on the left side of the

graphs and the HNB framework on the right. The inability of the standard Poisson model

to account for the frequent occurence of zero failures is readily apparent in the figures. In

addition, the HNB model appears to better track the magnitude of the banking distress

episodes of the late 2000s. Finally, although predicting the onset of a banking distress

episodes is difficult for both frameworks, the HNB model appears to better identify their

end.

We then repeat this analysis for the model versions where lagged values of the depen-

dent variables are used as additionnal predictors; Figure 7, 8 and 9 report the results thus

obtained. Overall, the quality of the forecasts appear to improve markedly with this addi-

tion: compare for example the scales of the Y-axis in Figure 7 relative to that in Figure 4.

As such our formal tests comparing the forecasting performance of different models will be

for the cases where the lagged values of bank failures are used (see below). Interestingly

however, Figures 7, 8 and 9 also reveal that the relative comparisons between the stan-

dard Poisson and our HNB benchmark are largely unchanged from above: the HNB model

has consistently-lower RMSEs and MAEs, has the better ability to correctly forecast the
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Figure 5: Realized and Predicted Bank failures - 1 and 3-months-ahead horizons
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Figure 6: Realized and Predicted Bank failures - 6 and 12-months-ahead horizons
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Figure 7: Forecasting performance with lagged values of bank failures
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Note: RMSEs (left-panel) and MAEs (right-panel) resulting from the 2000-2018 real-time forecasting

experiment, standard Poisson and HNB models with lagged values of bank failures as additional predictors.

X-axis represents the forecasting horizons and Y-axis the forecasting performance measure in units.

no-banking-distress episodes and appears to better identify the end of such episodes when

they occur. The fact that the HNB model retains its edge over the standard Poisson even

when lagged values of bank failures are allowed attests to the robustness of the approach.

Finally, Table 5 documents the relative predictive accuracy of our benchmark, HNB-

one-factor model against several alternatives. Each entry in the table reports the Root

Mean Square Error (RMSE) for the alternative model and horizon considered relative to

that of the benchmark.13 For example, the first row and column of Table 5 reports that the

RMSE of a one-factor standard Poisson model over the one-month-ahead horizon is 1.38

that of the RMSE of our benchmark over the same horizon. As such entries above 1 in the

table suggest that our benchmark has the better forecasting ability for the future number

of bank failures. In addition, symbols ∗,∗∗ and ∗∗∗ that these differences in predictive

ability are statistically different at the 10%, 5% and 1% levels, respectively, according to

13As indicated above, all models considered for Table 5 are the versions with the lagged values of bank

failures included as additional explanatory variables.

20



Figure 8: Forecasting performance with lagged values of bank failures:

1 and 3-months-ahead horizon
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Figure 9: Forecasting performance with lagged values of bank failures:

6 and 12-months-ahead horizon
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the Diebold and Mariano (1995) test.

Table 5: Testing for equal forecasting accuracy, 2000M1 - 2018M12

Models

One Component Two Components Non-Linear Component

Forecasting Horizon Poisson Poisson HNB Poisson HNB

t+1 month 1.38∗∗∗ 1.66∗∗∗ 1.18 1.18∗∗ 1.09

t+2 months 1.22∗∗∗ 5.80 1.30 3.81 5.10

t+3 months 1.16 1.18∗∗ 1.10∗ 1.57∗∗ 1.30∗

t+4 months 1.36∗∗∗ 2.85 1.50 1.32∗ 1.21

t+5 months 1.15∗∗∗ 6.00 0.99 1.05 1.18

t+6 months 1.20∗∗∗ 1.20∗ 1.08 1.09 2.54

t+7 months 1.85 5.45 1.16∗ 1.25∗∗ 1.05

t+8 months 1.13∗ 2.11 1.06∗ 1.17∗ 1.24

t+9 months 1.18∗∗∗ 1.70∗ 1.05 1.62 1.02

t+10 months 1.23 5.80 1.14∗ 1.11 1.39

t+11 months 1.07∗ 1.08 1.05 1.54 2.73

t+12 months 1.15∗∗ 1.06 1.76 1.13∗∗∗ 3.00

Note: Ratios of the Root Mean Square Errors (RMSE) of alternative models when forecasting the number

of bank failures, to the RMSEs of our HNB benchmark, for the cases where lagged bank failures appear

as additional predictors. Entries over 1 suggest superior forecasting performance of our benchmark and

symbols ∗,∗∗ and ∗∗∗ indicate statistically significant differences, at 10%, 5% and 1% levels respectively

(Diebold and Mariano, 1995).

Overall, the results reported in Table 5 clearly suggest that our HNB benchmark is

the better forecasting framework. Notably, the first column of the table shows that it

dominates the standard Poisson model for all forecasting horizons: all the relative RMSEs

are substantially over 1, most of them in a statistically-significant manner. Interestingly,

the two middle columns of the table also show that selecting only one predictor per group

of variables (or sector), as our benchmark model does, also leads a stronger forecasting

ability that allowing for two predictors per sector, although the latter strategy might fit

the model better in-sample. As such, this represents another examples of how parsimony

often produces the best out-of-sample forecasts. Finally, note from the last two columns

of the table that using squared factors does not improve the ability of the framework

significantly; overall then the key message from Table 5 is that our HNB benchmark
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with lagged values and one predictor per sector represents the best forecasting framework

assessed.

6 Conclusion

This paper develops a monitoring and forecasting framework for the monthly aggregate

occurrence of bank failures in the United States. To this end, we extract key sectoral

predictors from the large set of variables in the McCracken and Ng (2016) database and

incorporate them in a hurdle negative-binomial model for bank failures counts. Our re-

sult uncover a strong and consistent relationship between housing industry variables and

banking failures and our out-of-sample forecasting exercise, using the real-time vintages

of the McCracken and Ng (2016) data, documents the promising ability of the forecasting

framework.
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