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Abstract

Single equation estimation highlights the importance of higher order interest rate smoothing in

explaining interest rate inertia. We provide evidence conditioned on a Bayesian model consistent ap-

proach showing that higher order interest rate smoothing is empirically relevant and has important

implications for the prospect of determinacy. Based on an estimated New Keynesian model with pos-

itive trend inflation allowing the joint possibility of determinacy and indeterminacy, we find the pre-

ferred interest rate rule characterizing the Fed’s behavior includes second order interest-smoothing, a

time-varying inflation target, a response to output growth, and a persistent policy shock. This is true

for the pre-Volcker era and Great Moderation. Importantly, our evidence suggests this rule avoided

self-fulfilling revisions in inflationary expectations and indeterminacy during the pre-Volcker years.

Including an observable for the inflation target in the estimation is a key factor leading to these find-

ings.
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1 Introduction

Following Taylor (1993)’s influential contribution to the monetary policy debate and the em-

pirical work by Clarida et al. (2000) on monetary policy rules, a consensus in the macroeco-

nomic literature holds that US monetary policy ought to be described by a rule wherein the

Fed adjusts the nominal interest rate in response to deviations of inflation and output from

target levels, while smoothing short-term variations in the nominal interest rate, first order

interest-smoothing being the key mechanism leading to interest rate inertia.

Rudebusch (2002, 2006) subsequently questioned the source of inertia: If the Fed reacts

to persistent variables omitted from the policy rule, persistent policy shocks might explain

interest rate inertia without any smoothing intention from the Fed. Coibion and Gorod-

nichenko (2011, 2012) (CG) challenge this interpretation. Referring to Woodford (2003), CG

argue that theoretical models of policy inertia point to higher order interest-smoothing as

optimal. Using a variety of methods and data for the period 1983:I-2006:IV, they report ev-

idence of statistically significant smoothing parameters of order two, and of autoregressive

parameters in the error terms of the policy rules which are either negative or statistically

insignificant.

Until now the debate about the rule that best describes the Fed’s policy has been con-

ducted mostly within single-equation approaches. The present paper offers new evidence

from a Bayesian estimated model consistent approach. Using data from 1964:I to 1979:II and

1983:I to 2005:I, and a procedure permitting the joint possibility of determinacy and inde-

terminacy, we investigate if higher order interest-smoothing receives empirical support and

whether it matters for the prospect of indeterminacy. We show that second order interest-

smoothing is a robust empirical fact which has major implications for the determinacy out-

come.

Our evidence is based on a comparison of various estimated models with policy rules

embedding first and second order interest-smoothing. Policy rules also include responses to
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deviations of inflation from a time-varying inflation target as in Del Negro and Eusepi (2011)

and Del Negro et al. (2015), and adjustments to the level of the output gap and output growth,

or to output growth only. Monetary policy shocks are either persistent or white-noise. The

trend inflation rate is positive.

A novel aspect of our paper is that it combines the solution method to models of indeter-

minacy proposed by Bianchi and Nicoló (2020) (BN) with the Sequential Monte Carlo (SMC)

algorithm proposed by Herbst and Schorfheide (2014). This permits the joint estimation of

determinacy and indeterminacy regions of the model in a single estimation, even when the

region between the two is unknown. The advantage of the BN approach over others currently

used is that it does not require finding the boundary region for each likelihood evaluation

which is more computationally costly than our procedure.1

To estimate our models, we use for the first time in the literature on indeterminacy an

observable providing information about movements in the inflation target by Aruoba and

Schorfheide (2011), who estimate the common factor from two series capturing inflation ex-

pectations and actual inflation. Having a series measuring time-varying inflation target helps

identify the parameters of the policy rule, in particular those of interest-smoothing versus

persistent policy shocks, during both the so-called Great Inflation and Great Moderation.2

We consider Taylor rules with policy responses to different measures of economic activity

for the following reasons. While Clarida et al. (2000) used of various measures of the output

gap, Smets and Wouters (2007) assumed mixed policy responses to the level of the output

gap and output growth, where the output gap is defined as in the Textbook New Keynesian

(NK) model as the short-run deviations of output from its level at flexible prices (and nominal

wages) (Galı́ 2003). Still, Orphanides (2002), Walsh (2003), Sims (2013) and Khan et al. (2020)

put forward arguments favouring policy rules targeting output growth only.

Our substantive findings are summarized as follows. Since previous Bayesian studies on

1Estimating the same model with identical SMC algorithm parameters using the approach in Hirose et al.
(2020), we find that our approach is nearly four times faster (90 minutes compared to 5.5 hours).

2The inflation target series is strongly correlated with inflation expectations from the Survey of Professional
Forecasters. For periods where the target series and data on inflation expectations overlap, the correlation
coefficient with one and ten year ahead inflation expectations are 0.94 and 0.96, respectively.
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policy rules and indeterminacy have typically relied on first order interest-smoothing and

policy responses to deviations of inflation and output from targets, we first provide simula-

tion results about the exact boundaries of indeterminacy with second order smoothing and

policy responses to the output gap, the output growth, or both. We search for the minimum

policy response to inflation consistent with determinacy depending on interest-smoothing

being “high” or “mild” in a sense to be defined below. We show that insofar as the policy

rule minimally responds to the output gap, interest-smoothing does not have any effect on

determinacy regions. However, the policy response to inflation required for determinacy can

depart very significantly from the original Taylor Principle for an inflation trend between 0%

and 8%. When the policy rule targets output growth only, we show that it makes a difference

on the determinacy regions whether smoothing is high or mild. That is, with high smooth-

ing, determinacy is achieved for a policy response to inflation which is about 1. With mild

smoothing, we find that the response to inflation consistent with determinacy will depend

very much on the degree of price flexibility.

Next, we report simulation results from an exercise where data are generated from our

model when it is characterized by indeterminacy and determinacy, and then estimate our

model on this data. We show that with sample sizes close to our empirical samples our

estimation method correctly identifies data generated from a model with determinacy or

indeterminacy, with HPD intervals containing the true parameters.

In contrast to the previous literature, we show that the model delivering the largest esti-

mated marginal data densities for the pre-Volcker period is that with a policy rule including

two lags of smoothing, a time-varying inflation target, a response to output growth, and a

persistent policy shock. We find it has larger data densities than the same model but a white-

noise policy shock, or a similar model where policy responds to the output gap and output

growth rather than to output growth only. This model is also preferred for the period 1983:I

to 2005:I, meaning that according to our evidence the Fed adhered to the same rule during

the postwar period prior to the Great Recession.

Our Taylor rule estimates have important implications for the determinacy outcome. We

find that for the pre-Volcker era, the estimated model with second order policy smoothing, a
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time-varying inflation target, and a policy response to output growth delivers determinacy

with probability 1. Unlike Coibion and Gorodnichenko (2011, 2012), our evidence points to

both second order interest-smoothing and mildly persistent policy shocks. We also find that

with a policy rule targeting output growth, determinacy is obtained for the pre-Volcker era

with a policy shock which is either persistent or white-noise. However, with a policy rule

targeting output gap and output growth, we obtain determinacy with high probability only

if the policy shock is persistent.

If we follow the previous literature on indeterminacy, and replace second order interest-

smoothing by first order smoothing, we find lower marginal data densities and a near-zero

probability of determinacy with a rule responding to the output gap and output growth (see

also Lubik and Schorfheide (2004); Hirose et al. (2020)), but with probability 1 if the rule

responds to output growth only.

Adding an observable for the time-varying inflation target plays a key role in our estima-

tions. For if we include a time-varying inflation target, but without the additional observable

on the inflation target, then we find a probability of determinacy of 0.5 or lower for a rule

which targets output gap and growth, or output growth only.

The rest of the paper is organized as follows. Section 2 describes our economic model.

Section 3 describes the BN solution method to models with indeterminacy, the SMC estima-

tion algorithm, and the data and priors used in the estimation. Section 4 discusses simulation

evidence from our model about the determinacy regions and suitability of our estimation

strategy. Section 5 analyses our results. Section 6 puts our new findings into perspective in

the broader literature. Section 7 contains concluding remarks.

2 The Model

Our framework includes positive trend inflation and a real adjustment friction in the form of

external consumer habit formation. There is no capital accumulation. There is Calvo price

stickiness. Aggregate fluctuations are driven by shocks to the discount rate, TFP, to the time-

varying inflation target, to the policy rule, and if in a state of indeterminacy, by sunspot
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shocks.

2.1 Households

The representative consumer maximizes expected utility over final consumption goods C

and labour supply L

Max
Ct,Lt,Bt

E0

∞

∑
t=0

βtbt

[

log(Ct − hC̄t−1)− v
L

1+η
t

1 + η

]

, (1)

where β is the subjective discount factor, h the degree of external habit formation, η is the

inverse elasticity of labour supply, and bt is an intertemporal preference shock which follows

an AR(1) process given by

log bt = (1 − ρb)log b + ρblog bt−1 + ǫb
t , (2)

where ǫb
t is i.i.d. N(0, σ2

b ). The representative consumer is subject to the following budget

constraint

Bt + PtCt = Rt−1Bt−1 + WtLt + Πt, (3)

where Bt−1 is the stock of nominal bonds that the household enters period t with, Wt is the

nominal wage rate, Pt is the price of the final consumption good, Rt is the gross nominal

interest rate, and Πt is profits from ownership of the firms.

2.2 Final goods firms

Final goods firms operate in a perfectly competitive environment and package intermediate

goods into a final aggregate good, Yt, sold at price Pt. Their maximization problem is given

by

Max
Yt(i)

PtYt −
∫ 1

0
Pt(i)Yt(i)di, (4)
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where

Yt =

(

∫ 1

0
Yt(i)

ǫ−1
ǫ di

)
ǫ

ǫ−1

. (5)

Pt(i) and Yt(i) are prices and quantities of intermediate goods, and ǫ is the elasticity of substi-

tution between intermediate goods. The maximization problem yields the standard down-

ward sloping demand function for intermediate firm i’s input, which is a function of its

relative price and the price elasticity of demand

Yt(i) =

(

Pt(i)

Pt

)−ǫ

Yt, (6)

and the aggregate price index is given by

Pt =

(

∫ 1

0
Pt(i)

1−ǫ

)
1

1−ǫ

. (7)

The market clearing condition is given by

Yt = Ct. (8)

2.3 Intermediate producers

Intermediate goods are produced by a continuum of monopolistically competitive firms with

a constant returns to scale production function given by

Yt(i) = AtLt(i), (9)

where At is a technology shock common to all firms. Technology evolves according to

log gA,t = (1 − ρz)log gA + ρzlog gA,t−1 + ǫz
t , (10)
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where gA,t ≡ At/At−1 and ǫz
t is i.i.d. N(0, σ2

z ).

Intermediate producers minimize total costs each period subject to meeting demand

Min
Lt(i)

WtLt(i), (11)

and

AtLt(i) ≥

(

Pt(i)

Pt

)−ǫ

Yt. (12)

The minimization problem yields the following first-order condition,

MCt =
Wt

At
, (13)

where MCt is the nominal marginal cost in period t, and since all firms are subject to the

same technology shock and nominal wages, marginal costs are the same across all firms.

Firms are subject to Calvo pricing. Each period firms face a probability of reoptimizing their

price given by 1 − ξp. A firm setting its price optimally in period t maximizes the following

discounted expected flow of profits

Max
Pt(i)

Et

∞

∑
τ=0

(βξp)
τ λt+τ

λt

(

Pt(i)

Pt+τ

(

Pt(i)

Pt+τ

)−ǫ

Yt+τ − mct+τ

(

Pt(i)

Pt+τ

)−ǫ

Yt+τ

)

, (14)

where mct is the real marginal cost in in period t and λt is the marginal utility of nominal

income to the representative consumer in period t. Lastly we denote price dispersion in

period t by

v
p
t =

∫ 1

0

(

Pt(i)

Pt

)−ǫ

di. (15)
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2.4 Monetary policy

Monetary policy is set according to an endogenous feedback rule which takes the form

(

Rt

R

)

=

(

Rt−1

R

)ρR,1
(

Rt−2

R

)ρR,2
[(

πt

π⋆

t

)απ
(

Xt

)αx
(

Yt

Yt−1

)α∆y
]1−ρR,1−ρR,2

vr
t , (16)

where R is the gross nominal interest rate, π⋆

t is a time-varying inflation target, Xt is the

output gap defined as Yt
Yn

t
, and Yt

Yt−1
is the gross growth rate of output. The natural rate of

output, Yn
t , is given by

v

(

Yn
t

At

)1+η

=

(

ǫ − 1

ǫ

)

+ vh

(

Yn
t

At

)(

Yn
t−1

At

)

. (17)

vr
t and π⋆

t are exogenous processes given by

log vr
t = ρrlog vr

t−1 + ǫr
t , (18)

log π⋆

t = (1 − ρπ)π + ρπlog π⋆

t−1 + ǫπ
t , (19)

where ǫr
t is i.i.d. N(0, σ2

r ) and ǫπ
t is i.i.d. N(0, σ2

π).

2.5 Log-Linearization

Solving the model requires detrending output, which is done by removing trend growth and

taking a log-linear approximation of the stationary model around the non-stochastic steady

state. The full set of non-linear equations which characterize the equilibrium of the model

and the log-linearized model are reported in the Appendix of the paper.

3 Model Solution, Estimation, and Data

3.1 Rational Expectations Solution Under Indeterminacy

To solve the Linear Rational Expectations (LRE) model allowing for the possibility of inde-

terminacy, we use the solution method proposed by Bianchi and Nicoló (2020) (henceforth

BN). A standard LRE system can be cast in its canonical form given by
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Γ0(θ)st = Γ1(θ)st−1 + Ψ(θ)ǫt + Π(θ)ηt, (20)

where st is a vector of endogenous variables, ǫt a vector of exogenous disturbances, and ηt

a vector of one-step ahead forecast errors for the expectational variables in the model. The

solution method proposed by BN is to augment the canonical form with additional autore-

gressive equations, with the number of additional equations being equal to the degree of

indeterminacy. These additional equations can be used to provide the “missing” explosive

roots. This requires that when the model is characterized by indeterminacy of order p, then

p of the auxiliary equations must be explosive. When the model is determinant, the auxiliary

equations are not explosive and do not influence endogenous variables in the model. In our

case we permit one degree of indeterminacy and hence augment the LRE system in (20) with

one additional equation which is given by

ωt =

(

1

αBN

)

ωt−1 − ζt + η f ,t, (21)

where ζt is a sunspot shock which follows ζt ∼ i.i.d. N(0, σ2
ζ ). η f ,t is an expectational error.

BN show that the choice of expectational error does not affect the solution of the model when

the correlations between the sunspot shock and fundamental shocks are left unrestricted.

We assume that this expecational error is associated with inflation, that is, η f ,t = ηπ,t =

πt − Et−1πt. Additionally, since the model contains trend inflation, the exact boundary of

indeterminacy is unknown. As such we treat αBN as a parameter to be estimated alongside

the other structural parameters of the model.

Expanding the state space to include the additional auxiliary equation, the LRE model

takes the form

Γ̂0(θ)ŝt = Γ̂1(θ)ŝt−1 + Ψ̂(θ)ǫ̂t + Π̂(θ)ηt, (22)

where ŝt ≡ (st, ωt)′ and ǫ̂t ≡ (ǫt, ζt)′. The matrices Γ̂0, Γ̂1, Ψ̂, Π̂ are redefined to include

the auxiliary equation. (22) can now be solved using standard methods and the augmented
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representation contains solutions for the model in both the determinacy and indeterminacy

regions (given the parameter requirements discussed above). The BN characterization of

equilibrium indeterminacy is equivalent to the characterizations one would get using the

methodology of Lubik and Schorfheide (2003, 2004) or Farmer et al. (2015).

3.2 Econometric Strategy

To estimate the posterior distributions of the structural parameters and shocks we use Bayesian

estimation. Because the model features regions of determinacy and indeterminacy, posterior

densities are potentially multi-modal and standard posterior approximation methods such as

the random walk Metropolis Hastings (RWMH) algorithm can often get stuck at local modes

and fail to explore the entire posterior distribution. This is driven by the construction of the

algorithm, which relies on highly correlated draws. Instead we employ the Sequential Monte

Carlo (SMC) method proposed in Herbst and Schorfheide (2014) and discussed in Herbst and

Schorfheide (2016). SMC is an importance sampling algorithm but overcomes the main chal-

lenge associated with importance sampling, which is finding good proposal densities, by

recursively constructing a sequence of distributions which begins at some easy-to-sample

initial distribution (in our case, the prior distributions) and using these distributions as pro-

posal densities in the subsequent stages.

The sequence of distributions are given by

πn(θ) =
[p(Y|θ)]φn p(θ)

∫

[p(Y|θ)]φn p(θ)dθ
, (23)

where φn increases from 0 to 1 for n = 1, . . . , Nφ.3 The sequence of distributions for φn ∈

(0, 1) are referred to as tempered posteriors or bridge distributions, and the distribution associ-

ated with φn = 1 is the approximated posterior distribution. The parameter φn is referred to

as the tempering schedule and is determined by

3Because the SMC is based on recursively computing the bridge densities, the posterior density typically
denoted p(θ|Y) is abbreviated by πn(θ), where n is the bridge density in iteration n.
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φn =

(

n − 1

Nφ − 1

)λ

, (24)

where n is the current stage and Nφ is the total number of stages. λ determines the shape

of the tempering schedule. A value of λ = 1 implies a linear tempering schedule. For high

values of λ, initial bridge distributions will be quite similar to the prior distributions, and

bridge distributions will be quite different in the final stages of the algorithm. We use a value

of λ = 2, which is the suggested value by Herbst and Schorfheide (2016). The remaining

choices to be made are the number of stages and the number of particles in each stage. We

follow Herbst and Schorfheide (2016) and use 200 stages (Nφ = 200). However we opt for a

larger number of particles than typically recommended and use 25,000 (N = 25, 000). The ra-

tionale for this is that with the Bianchi and Nicoló (2020) solution approach, likelihood evalu-

ation requires a solution to exist and be unique (including the appended auxiliary equation).

However, many of the draws at each stage may be discarded due to: (1) the model being de-

terminant and the auxiliary equation being explosive; or (2) the model being indeterminant

and the auxiliary equation being non-explosive. This potentially leads to a non-negligible

decline in the number of particles at each stage, which we counteract by increasing the total

number of particles. After initializing the algorithm (i.e., drawing initial particles from the

prior distributions) and equalizing the initial weights, the algorithm proceeds in three steps:

1. Correction: The correction step reweights particles from the previous stage to areas of

parameter space with higher likelihoods. Reweighting occurs according to incremental

and normalized weights given by

w̃i
n = [p(Y|θi

n−1)]
φn−φn−1 , W̃ i

n =
w̃i

nW i
n−1

1
N ∑

N
i=1 w̃i

nW i
n−1

,

for all N particles.

2. Selection: The selection step computes the effective sample size (ESS) which is given

by ESSn = N
1
N ∑

N
i=1(W̃

n
i )

2
. If ESS falls below a threshold use multinomial resampling to
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resample the particles from support points and weights {θi
n−1, W̃ i

n} and equalize the

weights such that W i
n = 1. We use the threshold suggested by Herbst and Schorfheide

(2016), which resamples when ESSn < N/2. In effect, this step ensures that particles

do not become too concentrated, and if a function of the variance of the weights falls

below a threshold, then resample.

3. Mutation: The mutation steps propagates particles {θ̂i, W i
n} using a single step of the

RWMH algorithm with appropriate tuning parameters to ensure a reasonable accep-

tance rate.

The final sampling approximation, πNφ
(θ), yields the estimated posterior density for the

parameters.

Model fit. As noted by Herbst and Schorfheide (2016), the correction step approximates the

marginal data density as a by-product without having to compute any additional likelihood

evaluations. We use this approximation to rank our models. The approximation is given by

p̂SMC(Y) =
Nφ

∏
n=1

(

1

N

N

∑
i=1

w̃i
nW i

n−1

)

. (25)

Probability of determinacy. To assess the probability of determinacy our analysis examines

the posterior distribution of the parameter αBN. As discussed in the previous section, when

the model is characterized by determinacy, the parameter αBN must be strictly greater than

1 such that the appended equation has no impact on the dynamics of the model. Thus our

probability of determinacy is computed as

P(Determinacy) =
1

N

N

∑
i=1

1{αi
BN,Nφ

> 1}, (26)

where 1 is an indicator function which equals 1 if αBN > 1.

3.3 Data

To estimate the parameters of the model we use four U.S. quarterly time series: per capita

real GDP growth, GDP deflator based inflation, the Federal Funds rate, and a measure of
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target inflation from Aruoba and Schorfheide (2011). Our sample periods are dictated by the

availability of data on target inflation. The construction of the estimation data is described in

detail in the Appendix.

We estimate the model’s parameters over two different samples. The first sample corre-

sponds to the pre-Volcker era and spans the periods from 1964:I to 1979:II. The second sample

corresponds to the Great Moderation and spans from 1983:I to 2005:I.

The mapping of observables to model variables is given by













100∆ log Yt

100∆ log Pt

100 log Rt

100∆ log P⋆

t













=













ḡA

π̄

r̄

π̄













+













ỹt − ỹt−1 + ǫz
t

π̃t

r̃t

π̃⋆

t













, (27)

where ḡA, π̄, and r̄ are the steady state values of the growth rate of output, inflation, and

the nominal interest rate, respectively. These values are expressed in net terms given by

100(ḡA − 1), 100(π̄ − 1), and 100(r̄ − 1).

3.4 Calibration and Prior Distributions

All parameters are estimated except two which are calibrated. We set the elasticity of sub-

stitution between differentiated goods to 9, implying a 12.5% price markup with zero trend

inflation. The Frisch elasticity of labour supply is set to 1. These values are standard in the lit-

erature. The remaining structural parameters are estimated. Mean priors and prior standard

deviations for these parameter values are presented in Table 1.

The parameter governing consumer habit formation has a beta distribution prior with a

mean of 0.7 and standard deviation of 0.1. As in Justiniano et al. (2011), the prior for the Calvo

price stickiness parameter is given by a beta distribution with a mean of 0.66 and standard

deviation of 0.1.

Priors for the average rate of inflation, growth rate of output, and nominal interest rate

are set at roughly their average sample values for the post-WWII period. We use relatively

diffuse priors around these means. The average rate of inflation, output growth, and nominal

13



interest rate have normal distribution priors with means of 0.8, 0.4, and 1.2, with standard

deviations of 0.75, 0.2, and 0.4, respectively.

For the response parameters governing monetary policy, we generally follow those spec-

ified in Smets and Wouters (2007). The response parameters of inflation, the output gap, and

output growth have normal distribution priors with means of 1.5, 0.125, and 0.125 with prior

standard deviations of 0.3, 0.05, and 0.05. Our monetary policy rule features interest rate

smoothing of order two. For these two parameters we rely closely on the empirical estimates

in Coibion and Gorodnichenko (2011). For the order one interest rate smoothing parameter,

we specify a normal distribution prior with a mean of 1.1 and standard deviation of 0.25. For

interest rate smoothing of order two, we specify a normal prior with mean of 0 and standard

deviation of 0.25.4 When monetary policy is characterized by smoothing of order one, we

specify a beta prior with a mean of 0.6 and standard deviation of 0.2.

The exogenous disturbances have standard priors. Shocks have Inverse Gamma priors

with means of about 0.6 and standard deviations of 0.3. Persistence parameters of shocks

have beta distributions with means of 0.5 and standard deviations of 0.2. An identical prior

was used for the time-varying inflation target persistence in Del Negro et al. (2015).

For the parameter αBN, which determines whether the model is characterized by indeter-

minacy, we use a Uniform prior over the range [0.5, 1.5] as suggested by Bianchi and Nicoló

(2020). Lastly, for the correlation between sunspot shocks and fundamental shocks, we use

Uniform priors over the range [−1, 1].

4 Determinacy Regions and Simulated Data

This Section identifies the determinacy regions under the assumption of first and second

order interest-smoothing for a level of annualized trend inflation between 0% to 8%. Coibion

and Gorodnichenko (2011) show that targeting inflation and the output gap increases the

prospect of indeterminacy as trend inflation rises relative to targeting inflation and output

growth. However, when examining these two cases, they do not combine output targeting

4It is worth noting that with these priors the sum of autoregressive coefficients could yield a rule which is
super-inertial. However, we discard draws where the sum of coefficients is greater than one.
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with interest-smoothing. Furthermore, when they look at the impact of interest-smoothing

on the determinacy outcome, it is restricted to first order smoothing. Here, we perform a

similar exercise, but combining inflation and output targeting with second order interest-

smoothing.

4.1 Determinacy Regions

Our key findings can be summarized as follows. We identify through numerical simulations

the minimum policy response to inflation required for determinacy when assuming second

order smoothing. We consider “high” smoothing which is broadly consistent with CG’ esti-

mates (first order smoothing degree of 1.35 and second order degree of −0.4), and “mild ”

smoothing (first order degree of 0.75 and second order degree of −0.4).

With a policy rule targeting both the level of the output gap and output growth, we find

that interest-smoothing is basically irrelevant for the determinacy outcome which is driven

primarily by the policy response to the output gap. With a rule responding only to output

growth, interest-smoothing matters for determinacy. If smoothing is “high”, determinacy is

achieved with a policy reaction to inflation slightly above 1, and this up to an annualized

inflation trend of 8% and different degrees of price rigidity. If smoothing is “mild ”, deter-

minacy is somewhat sensitive to trend inflation between 3% and 5% if the Calvo stickiness

parameter is 0.66 or 0.75. With relatively flexible prices (Calvo stickiness parameter of 0.55),

determinacy is achieved with a policy response to inflation slightly higher than 1.

Figure 1 looks at the policy response to inflation consistent with determinacy when the

policy rule targets the output gap with a response parameter of 0.2. The determinacy regions

are traced for a first order smoothing parameter which is either 1.35 (high) or 0.75 (mild), and

a second order smoothing parameter of −0.4. The high positive first order and negative sec-

ond order smoothing parameter values are broadly consistent with the estimates reported by

Coibion and Gorodnichenko (2011). The mild positive first order smoothing parameter more

or less corresponds to some estimates we report below. The Calvo price stickiness parame-

ter is set at 0.55, 0.66 and 0.75, respectively. Other parameters take their mean prior values.

Figure 2 displays the determinacy regions with a policy rule reacting to output growth with
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a response coefficient of 0.2.

With flexible prices (Calvo stickiness parameter of 0.55) and a rule targeting the output

gap, Figure 1 reveals that determinacy is achieved with a policy reaction to inflation that lies

between 1 and 1.22 for an inflation trend varying between 0% and 8%. With a price stickiness

parameter of 0.66, a 5% trend inflation requires a policy response to inflation of about 1.25

to be consistent with determinacy. When the stickiness parameter is 0.75, there is a huge

increase in the minimum response to inflation consistent with determinacy to 1.75 with a 5%

trend inflation.

If the policy rule targets output growth, trend inflation does not matter for the prospect of

determinacy insofar as first order interest-smoothing is high. That is, determinacy is safely

achieved with a policy response to inflation that complies with the original Taylor principle.

With mild first order smoothing, the same conclusion applies insofar as prices are relatively

flexible (Calvo stickiness parameter of 0.55). With a stickiness parameter of 0.66, a policy

response to inflation of 1.01 is consistent with determinacy up to 5% trend inflation. With

a stickiness parameter of 0.75, the minimum policy response to inflation needed to ensure

determinacy departs from 1.01 when trend inflation exceeds 3% and reaches 1.38 at a level of

trend inflation of 5%.

Therefore, a policy rule targeting output growth in an economy with positive trend infla-

tion is generally consistent with determinacy with a lower policy reaction to inflation than

a rule aiming at the output gap. In fact, when policy reactions to both the output gap and

output growth are combined, the influence of output gap on the determinacy outcome is dis-

proportionately important relative to that of output growth. To see this, Figure 3 combines

policy responses to both the output gap and output growth, with response parameters of

0.2. There is almost no difference between this figure and 1 where the nominal interest rate

responds only to the output gap.

4.2 Simulated Data

To ensure that our estimation strategy is capable of delivering accurate structural parameter

estimates and posterior probabilities of determinacy, we conduct a simulation exercise in the
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following manner. First, we calibrate the structural parameters of the model such that in one

case the model is characterized by determinacy and in the other the model is characterized by

indeterminacy. We generate a sequence of 5,000 normally distributed shocks, with standard

deviations given by the calibrated values. We then iterate the shocks through the model,

keeping the final 75 observations for output growth, inflation, the nominal interest rate, and

the inflation target.5 In both cases we iterate the sunspot shocks through the model, but in

the case of determinacy these shocks have no impact on other endogenous variables of the

model.

Using the simulated data for the 4 observables, we then estimate the model parameters

and probability of determinacy using this data. The estimation results along with the cali-

brated parameter values used in generating the data are reported in Table 2. The prior distri-

butions for structural parameters are the same as those described in Section 3.4.

Two points are worth emphasizing. First, our simulation evidence suggests that even with

only 75 observations, the structural parameters are estimated quite well. In almost all cases

the 90% HPDI interval includes the true parameter value. Second, the simulation reveals that

our estimation accurately identifies data generated from indeterminacy and determinacy.

That is, αBN converges to the correct region. While the simulation exercise benefits from no

model uncertainty (the data is drawn from the correct model), it does give some validation

to our results in the rest of the paper.

5 Estimation Results

This Section presents our estimation results. We begin by presenting estimates of a model

with two interest-smoothing lags, a time-varying inflation target, with and without a persis-

tent policy shock, for the period 1964:I-1979:II. This is followed by estimates of models with

only one lag of interest-smoothing. Finally, we report estimates for the period 1983:I-2005:I.

We provide estimates of the structural parameters and shocks with their 90% confidence in-

tervals. The log p(XT) represents the marginal data density of a model, while Prob(det) is the

5Our choice of 75 observations is motivated by our empirical sample sizes which are 62 for the pre-1979
period and 89 for the post-1983 period.
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posterior probability of equilibrium determinacy implied by the model estimates.

5.1 Second Order Smoothing: 1964:I-1979:II

Table 3 presents four sets of results. The first column contains estimates of a model that

includes a policy rule with second order smoothing, a time-varying inflation target, policy

responses to both the level of the output gap and output growth (hereafter mixed output rule

or MO-rule), and an AR(1) policy shock. The second column presents estimates with a policy

rule that aims at output growth only (hereafter output growth rule or OG-rule). Columns 3

and 4 provide estimates for the same two models, except that the monetary policy shocks are

white-noise shocks.

Table 3 unveils the following main findings. The log marginal data densities log p(XT) re-

ported in the second to last row of the table reveal that the preferred model by this criterion is

the OG-rule model, followed by the MO-model. This finding, which is new to the literature,

is of interest in light of previous contributions by Walsh (2003), Sims (2013) and Khan et al.

(2020) that put forth arguments in favour of adopting policy rules targeting output growth.

Compared to previous works that favoured MO-rule over OG-rule models, and which we

discuss in Section 7, our results are generated with a different solution method and estima-

tion procedure, second order interest rate smoothing, a time-varying inflation target and a

additional observable for the inflation target that stands as a proxy for inflation expectations

and which dates back to the 1960s.

Models with second order smoothing and a persistent policy shock, whether the policy

rule includes a response to the output gap and output growth or to output growth only,

predict determinacy with a high probability, that is probability .85 for the MO-rule and prob-

ability .99 for the OG-rule. The estimated policy response to inflation is 2.0 for the MO-rule

and 2.13 for the OG-rule.

The estimated first order smoothing parameters are respectively 0.83 and 0.81 for the MO-

rule and OG-rule models, while estimates of the second order smoothing parameters are

−0.32 and −0.34. The first order smoothing parameters are thus smaller than those reported

by Coibion and Gorodnichenko (2011, 2012), while the second order smoothing parameters
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are consistent with CG’ estimates.

The estimated AR(1) parameter of the policy shock process is .38 in the MO-rule model

and .37 in the OG-rule model. While moderate, the estimated HPD interval for AR(1) pa-

rameters of the policy shock do not contain zero. Therefore, unlike the evidence in CG, ours

confirms both the presence of second order interest-smoothing and persistent policy shocks

in the MO-rule and OG-rule models.

The estimated price stickiness parameters are .626 and .622, respectively. The estimated

average annualized rate of inflation is 4.27 percent for the MO-rule model and 4.17 percent

for the OG-rule model. Therefore, based on these estimates and the simulated determinacy

regions identified in Section 4.1, determinacy is safely achieved under both the mixed rule

and the growth-rule for our pre-1980 sample.

How important is it to have persistent monetary policy shocks in addition to second or-

der smoothing and a time-varying inflation target for the determinacy outcome? The third

and fourth columns of Table 3 presents estimates with white-noise policy shocks. Having

a white-noise policy shock has important consequences for the determinacy outcome under

the MO-rule, for then the probability of determinacy is down from .85 to only .33. Note in

this particular case that the Calvo price stickiness parameter is about .7 and that the policy

response to inflation is 1.4. Furthermore, the average annualized of inflation is about 4.6

percent. Therefore, given these estimated parameter values and based on our simulation

of determinacy regions in Section 4.1, determinacy would have required a stronger policy

response to inflation.

By contrast, under the output growth policy rule, the probability of determinacy is 1. The

policy response to inflation at 2.09 is significantly higher than in the MO-rule model. Note

also that with white-noise policy shocks, the estimated first order interest-smoothing param-

eters are significantly higher compared to estimates with persistent policy shocks. Therefore,

there seems to be some tradeoff between the degree of interest-smoothing and the degree of

persistence in the policy shock.
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5.2 First Order Interest-Smoothing: 1964:I-1979:II

How important is it to have second order interest-smoothing for our results? The previous

literature using a Bayesian model consistent approach to monetary policy and indeterminacy

has generally focused on first order interest-smoothing models. Table 4 reports estimation re-

sults with one lag of smoothing combined with a time-varying inflation target and persistent

policy shock, and this for the sample 1964:I-1979:II, using our four observables in the estima-

tion.6

The results are striking. The probability of determinacy is now down to .01 with first or-

der smoothing when policy responds both to the output gap and output growth. The policy

response to inflation drops to 1.39. Furthermore, the Calvo price stickiness parameter rises to

.815. The estimated average annualized rate of inflation is about 4.8 percent. Together, these

factors contribute to predicting indeterminacy when the model features first order smooth-

ing.

By stark contrast, the estimated probability of determinacy is 1 for the OG-rule model.

The estimated policy reaction to inflation remains high at 2.13, while the probability of price

non-reoptimization at .64 is much lower than in MO-rule model. The estimated average

inflation rate is 4.23 percent. These estimates concur in making of determinacy an outcome

with certainty under the OG-rule. Note also that based on the log marginal data densities

log p(XT), the OG-rule model with first order smoothing and a persistent policy shock is

preferred to the MO-rule model. This finding also contrasts with the rest of the literature

which generally holds that a rule specification with responses to the output gap and output

growth is generally better for the pre-Volcker period.

5.3 Second Order-Smoothing: 1983:I-2005:I

Table 5 presents our estimation results from 1983:I to 2005:I. Again, we report estimates for

the MO-rule and OG-rule models, with and without a persistent policy shock. Based on

the log marginal data densities log p(XT) reported in the second to last row of the table, the

6We do not report the results with a white-noise policy shock because they are significantly worse than those
with a persistent policy shock.
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model preferred by this criterion is the OG-rule model with a persistent policy shock. This

model also predicts an estimated probability of determinacy of 1. This is also the case for the

MO-rule model with a persistent policy shock.

The estimated models with two smoothing lags and a persistent policy shock are strongly

preferred to models with second order smoothing and a white-noise policy shock. In the

case of the MO-rule model with a white-noise policy shock, the estimated probability of de-

terminacy drops to a low .06. Still, the OG-rule model delivers determinacy with probability

1.

Therefore, our evidence points to the statistical superiority of models with two lags of

smoothing and a persistent policy shock prior to 1980 and after 1982. Our evidence hence

makes a strong case in favour of a policy rule with two smoothing lags and a persistent policy

shock.

5.4 Inflation Target Observable

A novel aspect of our work is the use of a series for the inflation target that serves as an

observable in the estimation of our models, and which helps identify the parameters of the

policy rule and of the inflation target shock process. Haque (forthcoming) assumes a time-

varying inflation target in studying indeterminacy, but without the use of a series for the

inflation target as an observable.

Table 6 report estimates of our model with two interest-smoothing lags, a time-varying

inflation target, policy responses to output gap gap and output growth, and to output growth

only, with a persistent policy shock, using three observables instead of four in the estimation.

Without the observable on the inflation target, the probability of determinacy is down to .51

for the MO-rule model and to .42 for the OG-model. These results confirm that having a

series for the inflation target makes an important difference for the determinacy outcome.
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6 Related Literature

This Section explains how our findings relate to the broader literature on monetary policy

rules and indeterminacy. Most of the previous literature has concluded that the US econ-

omy experienced indeterminacy during the 1960 & 1970s and determinacy after 1982. These

studies have typically assumed policy rules with one interest-smoothing lag and responses

to the output gap, or to both the output gap and output growth. These rules have also in-

cluded policy responses to deviations of inflation from a fixed target or from a target which

is time-varying. Policy shocks were either white-noise or persistent.

Clarida et al. (2000) explain periods of indeterminacy and determinacy using estimates

of policy rules with first order smoothing where the inflation response parameters are lower

than 1 during the pre-Volcker period and hence leading to indeterminacy, while higher than

2 after 1982 and resulting into determinacy.

Using a prototypical NK price setting model estimated with a Bayesian method that per-

mits the possibility of determinacy or indeterminacy, Lubik and Schorfheide (2004) corrobo-

rate CGG’s findings that monetary policy was highly accommodative during the pre-Volcker

period and conclude that the US economy was in a state of indeterminacy. Compared to our

preferred policy rule, theirs includes first order interest-smoothing, responses to deviations

of inflation and output from target levels, and a white-noise policy shock. Trend inflation is

zero. The model is estimated conditional on information from three observables which are

HP detrended real GDP, CPI-U inflation and the average federal funds rate.

Hirose et al. (2020) extend the work of Lubik and Schorfheide by estimating different ver-

sions of a NK price setting model with positive trend inflation. They use a full-information

Bayesian method and a SMC algorithm such that they can assess regions of determinacy

and indeterminacy in a single estimation. Their model includes a policy rule with first order

smoothing, policy responses to deviations of inflation from a fixed target, to level of the out-

put gap, and to deviations of output growth from trend. The policy shock follows a AR(1)

process. The estimation uses three observables: real GDP growth, inflation, and the federal

funds rate. They conclude that the pre-Volcker years were characterized by indeterminacy
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with certainty or a high probability, while the economy experienced determinacy after 1982.

They argue, in line with Coibion and Gorodnichenko (2011), that a more active response to

inflation was not sufficient to explain U.S. macroeconomic stability after 1982. A lower level

of trend inflation, and/or a weaker response to the output gap and a stronger response to

output growth are also required to achieve determinacy.

Unlike Lubik and Schorfheide (2004) and Hirose et al. (2020), our estimations reveal that

the model preferred by the criterion of marginal data densities is one with a policy rule in-

cluding second order smoothing, a time-varying inflation target and a reaction to output

growth only. Determinacy rather than indeterminacy is then reached with near-certainty.

Our rule specification plays an important role driving our new results. That is, consistent

with the evidence in Lubik and Schorfheide and Hirose et al., we obtain indeterminacy with

near-certainty if the policy rule assumes first order smoothing, a time-varying inflation target

and responses to both the output gap and output growth.

Bilbiie and Straub (2013) augment the standard NK price setting model with limited asset

market participation. They argue that the pre-1980s were characterized by low asset market

participation implying that lower interest rates has contractionary rather than expansionary

effects on the economy, and thus led to determinacy during the pre-Volcker years. Compared

to our policy rules, theirs features one lag of interest-smoothing, responses to one-period

ahead expected inflation and actual output, and a white-noise policy shock. Trend inflation

is zero.7

Coibion and Gorodnichenko (2011) import single-equation estimates of policy rules fea-

turing two interest-smoothing lags in a calibrated NK model with sticky prices. They con-

clude that high positive trend inflation and a “dovish” monetary policy led to indetermi-

nacy prior to 1980, while determinacy was achieved during the Great Moderation by setting

a lower level of trend inflation and adopting a “hawkish” policy stance against inflation.8

7Ascari et al. (2017) show that a small amount of nominal wage stickiness will normally prevent inversion
of the slope of the IS curve when accounting for limited asset market participation, and hence will invalidate
the Inverted Taylor Principle.

8Ascari and Ropele (2009) show that with positive trend inflation, determinacy will require policy responses
to inflation stronger than dictated by the original Taylor Principle. Khan et al. (2020) show that a policy rule
targeting the output gap makes determinacy very unlikely if average (trend) annualized inflation reaches 4
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While our evidence is consistent with second order interest-smoothing, it also confirms the

significance of mildly persistent policy shocks. Furthermore, CG conclude to indeterminacy

during the pre-Volcker period, our estimation results point to determinacy.

Haque et al. (2021) estimate a NK price setting model with positive trend inflation, com-

modity price shocks and a real wage rigidity. Their policy rule includes first order smoothing,

responses to the level of the output gap and output growth, and a white-noise policy shock.

They find when combining these ingredients that the estimated policy response to the output

gap is nearly zero, so that determinacy is achieved. By contrast, our main new findings hinge

primarily on our different Taylor rule.

Haque (forthcoming) argues that adding a time-varying inflation target to an otherwise

standard NK sticky price model with first order interest-smoothing, policy responses to the

output gap and output growth, and a white-noise policy shock is sufficient to restore deter-

minacy prior to 1980. Unlike us, he does not use an observable for target inflation. When

dropping the inflation target series as an observable, the probability of determinacy is down

to .42 with a rule responding to output growth and to .51 with a rule reacting to output gap

and output growth. Therefore, it is not accounting for time-varying inflation target per se

that drives our determinacy results prior to 1980, but the fact that we combine second order

smoothing, a time-varying inflation, and a persistent policy shock in a model estimated with

an observable conveying information about movements in the inflation target.

7 Conclusion

Previous work based on a single equation estimation approach highlighted the importance of

higher order interest rate smoothing in explaining interest rate inertia (Coibion and Gorod-

nichenko 2011, 2012). Using a Bayesian model consistent approach to monetary policy rules

that allows the possibility of both determinacy and indeterminacy, we have offered new ev-

idence confirming the empirical relevance of higher order interest rate smoothing and its

implications for the prospect of determinacy.

percent.
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While our evidence pointed to both second order interest-smoothing and mildly persis-

tent policy shocks, we have shown that our determinacy findings for the pre-Volcker era do

not the depend on the policy shock being persistent or white-noise insofar as the policy rule

responds to deviations of inflation from a time-varying target and output growth.

On the whole, our findings suggest the Fed followed a consistent policy rule throughout

the postwar period prior to the Great Recession, and one which avoided self-fulfilling infla-

tion expectations prior to 1980. This rule differs however from those which have been used

so far in the Bayesian macroeconomic literature.
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A Data construction

To estimate the structural parameters of our model, we use four observables. These observ-
ables correspond to per capita output growth, inflation, the federal funds rate, and a measure
of target inflation. Our first three observables were downloaded from the Federal Reserve
Bank of St. Louis on September 28th, 2021. The exact variables and corresponding FRED
codes are

– Gross Domestic Product (GDP)

– Gross Domestic Product Implicit Price Deflator (GDPDEF)

– Effective Federal Funds rate (FEDFUNDS)

– Population Level (CNP16OV)

Prior to defining per capita GDP, we fit the population level with a Hodrick Prescott filter
with a smoothing parameter of 10,000 and use the trend from this series as our measure of
population. The rationale for this, as noted by Pfeifer (2020), is that population levels are
periodically updated due to censuses or benchmarking in the Current Population Survey.
These updates cause spikes in population growth rates not related to changes in the actual
population.

Our measure of target inflation is from Aruoba and Schorfheide (2011). The authors esti-
mate this measure by combining three inflation expectation measures in a small state space
model and extracting the common factor using the Kalman filter. The series is available for
download at Frank Schorfheide’s website https://web.sas.upenn.edu/schorf/publications/
from the paper Sticky Prices versus Monetary Frictions: An Estimation of Policy Trade-offs. The
data file is titled “inflation-target” and we use the data under the column heading filtered f0.

Our observables are then defined as

100 × ∆ log Yt = 100 × ∆ log

(

GDP

GDPDEF × ˆPOP

)

, (28)

100 × ∆ log Pt = 100 × ∆ log

(

GDPDEF

GDPDEF−1

)

, (29)

100 × log Rt = 100 × log

(

1 +
FEDFUNDS

400

)

, (30)

100 × ∆ log P⋆

t =

(

filtered f0

4

)

, (31)

where ˆPOP is the filtered population level.
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B Full Set of Non-linear Equilibrium Conditions

Below we describe the full set of equations which characterize the equilibrium of the model.
There are 17 equations and 17 endogenous variables.
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log gA,t = (1 − ρz)log gA + ρzlog gA,t−1 + ǫz
t (46)

log bt = (1 − ρb)log b + ρblog bt−1 + ǫb
t (47)

log vr
t = ρrlog vr

t−1 + ǫr
t (48)

log π⋆

t = (1 − ρπ)π + ρπlog π⋆
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C Log-linearized model

After detrending the model by removing trend growth, the log-linearized model can be char-
acterized by 11 endogenous variables and 11 equations which are described below.

ỹt =
h

h + gA

(

ỹt−1 − g̃A,t

)

+
gA

h + gA
Et

(

ỹt+1 + g̃A,t+1

)

−
gA − h

h + gA

(

r̃t − Etπ̃t+1 − b̃t + Etb̃t+1

) (50)

π̃t =β[1 + ǫ(1 − ξpπǫ−1)(π − 1)]Etπ̃t+1 + β(1 − ξpπǫ−1)(π − 1)Et x̃1,t+1

+

(

(1 − ξpπǫ−1)(1 − βξpπǫ)

ξpπǫ−1

)

((1 + η)ỹt + ηṽ
p
t ) + β(1 − π)(1 − ξpπǫ−1)b̃t

+

(

(1 − βξpπǫ−1)(1 − ξpπǫ−1)

ξpπǫ−1

)(

h

gA − h

)

(

ỹt − ỹt−1 + g̃A,t

)

(51)

x̃1,t = (1 − βξpπǫ)(b̃t + (1 + η)ỹt + ηṽ
p
t ) + βξpπǫ

Et[x̃1,t+1 + ǫπ̃t+1] (52)

ṽ
p
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ǫξpπǫ−1(π − 1)

1 − ξpπǫ−1
π̃t + πǫξpṽ

p
t−1 (53)

ỹn
t =

h

(1 + η)gA − hη

(

ỹn
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(54)

r̃t =ρR,1r̃t−1 + ρR,2r̃t−2

+ (1 − ρR,1 − ρR,2)

(

απ(π̃t − π̃⋆

t ) + αx x̃t + α∆y(ỹt − ỹt−1 + g̃A,t)

)

+ ṽr
t

(55)

x̂t = ŷt − ŷn
t (56)

g̃A,t = ρz g̃A,t−1 + ǫz
t (57)

b̃t = ρbb̃t−1 + ǫb
t (58)

ṽr
t = ρrṽr

t−1 + ǫr
t (59)

π̃⋆

t = ρππ̃⋆

t−1 + ǫπ
t (60)
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Table 1: Prior distributions

Parameter Domain Density Para(1) Para(2)

h [0,1) Beta 0.7 0.1

ξp [0,1) Beta 0.66 0.1

απ R
+ Normal 1.5 0.3

αx R
+ Normal 0.125 0.05

α∆y R
+ Normal 0.125 0.05

ρR,1 R
+ Normal 1.1 0.25

ρR,2 R Normal 0 0.25

Ā R Normal 0.4 0.2

π̄ R Normal 0.8 0.75

r̄ R
+ Normal 1.2 0.4

ρb [0,1) Beta 0.5 0.2

ρz [0,1) Beta 0.5 0.2

ρr [0,1) Beta 0.5 0.2

ρπ [0,1) Beta 0.5 0.2

σb R
+ InvGamma 0.5 4

σz R
+ InvGamma 0.5 4

σr R
+ InvGamma 0.5 4

σπ R
+ InvGamma 0.5 4

σs R
+ InvGamma 0.5 4

αBN [0.5,1.5] Uniform 0.5 1.5

ρb,s [-1,1] Uniform -1 1

ρz,s [-1,1] Uniform -1 1

ρr,s [-1,1] Uniform -1 1

ρπ,s [-1,1] Uniform -1 1

Notes: For the beta and normal densities, Para(1) and Para(2) refer to the means and standard deviations
of the prior. For the Uniform densities, Para(1) and Para(2) refer to the lower and upper bounds. For the

Inverse Gamma distribution, Para(1) and Para(2) refer to s and v where pIG(σ|v, s) ∝ σ−v−1e−vs2/2σ2
.
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Table 2: ESTIMATION OF SIMULATED DATA

Indeterminacy Determinacy

True 75 observations True 75 observations

h 0.85 0.771 [0.707,0.838] 0.85 0.820 [0.778,0.863]

ξp 0.75 0.719 [0.627,0.819] 0.75 0.735 [0.684,0.781]

απ 0.8 0.943 [0.767,1.121] 1.9 1.702 [1.462,1.945]

αx 0.12 0.144 [0.065,0.218] 0.12 0.115 [0.035,0.184]

α∆y 0.18 0.127 [0.045,0.202] 0.18 0.121 [0.050,0.198]

ρR,1 0.90 0.902 [0.690,1.103] 0.90 0.942 [0.793,1.094]

ρR,2 -0.25 -0.353 [-0.488,-0.218] -0.25 -0.376 [-0.491,-0.258]

Ā 0.50 0.564 [0.388,0.762] 0.50 0.430 [0.225,0.624]

π̄ 1.00 0.740 [0.533,0.955] 1.00 0.989 [0.846,1.124]

r̄ 1.40 1.015 [0.790,1.264] 1.40 1.264 [0.990,1.539]

ρb 0.80 0.552 [0.239,0.862] 0.80 0.753 [0.656,0.870]

ρz 0.25 0.399 [0.165,0.647] 0.25 0.247 [0.100,0.388]

ρr 0.50 0.551 [0.236,0.623] 0.50 0.514 [0.389,0.652]

ρπ 0.99 0.887 [0.805,0.980] 0.99 0.953 [0.920,0.988]

σb 1.00 0.522 [0.284,0.764] 1.00 0.829 [0.584,1.046]

σz 1.20 0.760 [0.474,1.090] 1.20 1.091 [0.856,1.303]

σr 0.30 0.311 [0.260,0.358] 0.30 0.358 [0.288,0.425]

σπ 0.05 0.126 [0.109,0.142] 0.05 0.125 [0.109,0.141]

σs 0.50 0.564 [0.484,0.650] 0.50 0.579 [0.279,0.887]

αBN 0.50 0.762 [0.557,0.997] 1.50 1.240 [1.003,1.443]

ρb,s 0.00 -0.079 [-0.811,0.613] 0.00 -0.003 [-0.647,0.667]

ρz,s 0.00 -0.146 [-0.439,0.133] 0.00 -0.070 [-0.719,0.583]

ρr,s 0.00 -0.110 [-0.490,0.285] 0.00 -0.004 [-0.688, 0.651]

ρπ,s 0.00 -0.125 [-0.465,0.269] 0.00 0.042 [-0.600, 0.718]

Prob(det) 0.0000 1.0000

Notes: In the estimates columns, the numbers in brackets are 90% HPDI intervals. The priors used in the estimation of the simulated
data are the same as the priors listed in Table 1.
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Figure 1: Indeterminacy region with output gap response
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Notes: The output gap response, αx, is 0.2 and the output growth response, α∆y, is 0.
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Figure 2: Indeterminacy region with output growth response
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Notes: The output gap response, αx, is 0 and the output growth response, α∆y, is 0.2.
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Figure 3: Indeterminacy region with output gap and growth response
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Notes: The output gap response, αx, is 0.2 and the output growth response, α∆y, is 0.2.
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Table 3: AR(2) Policy Rules 1964Q1:1979Q2

Persistent policy shocks White noise policy shocks

Mixed rule Growth rule Mixed rule Growth rule

h 0.500 0.469 0.542 0.472

[0.370,0.641] [0.358,0.573] [0.419,0.661] [0.359,0.585]

ξp 0.626 0.622 0.696 0.577

[0.521,0.711] [0.540,0.713] [0.526,0.852] [0.469,0.683]

απ 1.999 2.125 1.399 2.092

[0.790,2.596] [1.808,2.476] [0.734,2.254] [1.757,2.405]

αx 0.119 — 0.158 —

[0.044,0.195] [—,—] [0.077,0.236] [—,—]

α∆y 0.148 0.135 0.136 0.130

[0.079,0.223] [0.064,0.208] [0.066,0.209] [0.053,0.202]

ρR,1 0.834 0.807 1.051 0.971

[0.616,1.069] [0.600,1.026] [0.814,1.257] [0.782,1.169]

ρR,2 -0.317 -0.338 -0.313 -0.358

[-0.502,-0.130] [-0.525,-0.130] [-0.473,-0.141] [-0.526,-0.163]

Ā 0.442 0.451 0.417 0.445

[0.195,0.694] [0.203,0.692] [0.190,0.663] [0.189,0.680]

π̄ 1.068 1.043 1.148 1.049

[0.861,1.277] [0.832,1.259] [0.921,1.390] [0.851,1.253]

r̄ 1.359 1.324 1.453 1.339

[1.117,1.596] [1.099,1.542] [1.260,1.654] [1.165,1.502]

ρb 0.728 0.793 0.561 0.799

[0.424,0.896] [0.710,0.883] [0.243,0.895] [0.724,0.895]

ρz 0.185 0.160 0.402 0.171

[0.052,0.272] [0.062,0.249] [0.073,0.766] [0.077,0.265]

ρr 0.380 0.373 — —

[0.204,0.545] [0.220,0.528] [—,—] [—,—]

ρπ 0.916 0.932 0.930 0.933

[0.865,0.971] [0.887,0.983] [0.890,0.974] [0.888,0.977]

σb 1.226 1.310 1.303 1.473

[0.680,1.834] [0.922,1.695] [0.380,1.984] [1.070,1.924]

σz 1.596 1.520 1.257 1.521

[1.083,2.177] [1.212,1.833] [0.508,1.807] [1.162,1.833]

σr 0.366 0.369 0.269 0.314

[0.245,0.480] [0.273,0.474] [0.215,0.330] [0.249,0.381]

σπ 0.151 0.148 0.144 0.147

[0.127,0.173] [0.126,0.171] [0.122,0.164] [0.124,0.167]

σs 0.513 0.571 0.458 0.604

[0.288,0.741] [0.275,0.865] [0.343,0.572] [0.280,0.926]

αBN 1.195 1.262 0.936 1.251

[0.804,1.500] [1.052,1.495] [0.514,1.303] [1.028,1.470]

ρb,s -0.005 -0.027 0.077 -0.014

[-0.679,0.676] [-0.697,0.621] [-0.381,0.598] [-0.695,0.633]

ρz,s -0.006 0.014 -0.126 -0.011

[-0.594,0.601] [-0.645,0.684] [-0.478,0.270] [-0.719,0.622]

ρr,s 0.016 -0.040 -0.088 -0.006

[-0.580,0.672] [-0.715,0.610] [-0.627,0.269] [-0.633,0.685]

ρπ,s 0.130 -0.013 0.402 0.007

[-0.471,0.878] [-0.698,0.655] [-0.454,0.897] [-0.697,0.651]

log p(XT ) -93.1928 -91.7187 -95.5699 -95.5688

Prob(det) 0.8489 0.9928 0.3271 1.0000
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Table 4: AR(1) Policy Rules 1964Q1:1979Q2

Mixed rule Growth rule

h 0.602 0.491

[0.504,0.703] [0.382,0.598]

ξp 0.815 0.642

[0.739,0.902] [0.563,0.724]

απ 1.388 2.129

[0.818,1.893] [1.793,2.451]

αx 0.162 —

[0.104,0.228] [—,—]

α∆y 0.120 0.133

[0.050,0.191] [0.063,0.206]

ρR,1 0.639 0.486

[0.505,0.793] [0.334,0.626]

ρR,2 — —

[—,—] [—,—]

Ā 0.368 0.449

[0.115,0.636] [0.205,0.686]

π̄ 1.195 1.058

[0.932,1.487] [0.845,1.247]

r̄ 1.410 1.354

[1.140,1.682] [1.141,1.560]

ρb 0.520 0.817

[0.214,0.806] [0.745,0.894]

ρz 0.661 0.167

[0.267,0.946] [0.063,0.262]

ρr 0.466 0.396

[0.277,0.671] [0.250,0.542]

ρπ 0.945 0.929

[0.914,0.981] [0.882,0.980]

σb 1.174 1.342

[0.238,2.637] [0.962,1.717]

σz 0.874 1.600

[0.321,1.628] [1.248,1.927]

σr 0.278 0.356

[0.224,0.333] [0.278,0.437]

σπ 0.145 0.148

[0.126,0.167] [0.126,0.171]

σs 0.471 0.644

[0.359,0.559] [0.278,1.033]

αBN 0.760 1.248

[0.535,0.972] [1.045,1.492]

ρb,s -0.009 -0.026

[-0.444,0.498] [-0.703,0.646]

ρz,s -0.021 0.031

[-0.330,0.288] [-0.646,0.705]

ρr,s -0.225 0.013

[-0.465,0.018] [-0.652,0.688]

ρπ,s 0.707 0.006

[0.557,0.868] [-0.642,0.671]

log p(XT ) -94.0730 -93.6336

Prob(det) 0.0101 1.0000
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Table 5: AR(2) Policy Rules 1983Q1:2005Q1

Persistent policy shocks White noise policy shocks

Mixed rule Growth rule Mixed rule Growth rule

h 0.635 0.659 0.784 0.710

[0.546,0.739] [0.571,0.749] [0.682,0.880] [0.609,0.809]

ξp 0.806 0.817 0.863 0.803

[0.769,0.843] [0.785,0.848] [0.835,0.902] [0.754,0.851]

απ 2.414 2.372 1.241 1.984

[2.049,2.750] [2.018,2.746] [0.835,1.607] [1.537,2.420]

αx 0.085 — 0.144 —

[0.006,0.150] [—,—] [0.105,0.191] [—,—]

α∆y 0.166 0.173 0.158 0.203

[0.099,0.232] [0.106,0.240] [0.092,0.220] [0.130,0.281]

ρR,1 0.687 0.683 1.275 1.262

[0.525,0.860] [0.512,0.836] [1.148,1.427] [1.112,1.435]

ρR,2 -0.254 -0.263 -0.353 -0.416

[-0.418,-0.099] [-0.423,-0.105] [-0.521,-0.208] [-0.582,-0.268]

Ā 0.525 0.482 0.269 0.480

[0.349,0.708] [0.283,0.677] [-0.004,0.498] [0.278,0.687]

π̄ 0.784 0.855 0.801 0.816

[0.617,0.948] [0.682,1.032] [0.695,0.923] [0.676,0.947]

r̄ 1.508 1.568 1.283 1.476

[1.313,1.732] [1.305,1.812] [1.067,1.490] [1.284,1.661]

ρb 0.848 0.838 0.437 0.794

[0.784,0.916] [0.775,0.906] [0.270,0.567] [0.686,0.894]

ρz 0.177 0.186 0.711 0.229

[0.047,0.300] [0.044,0.343] [0.458,0.962] [0.048,0.417]

ρr 0.767 0.771 — —

[0.703,0.834] [0.708,0.835] [—,—] [—,—]

ρπ 0.930 0.956 0.958 0.920

[0.893,0.979] [0.922,0.990] [0.930,0.992] [0.870,0.970]

σb 1.227 1.189 1.603 1.592

[0.875,1.533] [0.876,1.520] [1.029,2.186] [1.132,2.015]

σz 1.112 1.174 0.863 1.264

[0.879,1.355] [0.929,1.432] [0.274,1.420] [0.930,1.586]

σr 0.256 0.246 0.163 0.185

[0.203,0.306] [0.195,0.298] [0.137,0.185] [0.159,0.214]

σπ 0.113 0.111 0.134 0.116

[0.100,0.126] [0.097,0.124] [0.118,0.154] [0.100,0.129]

σs 0.550 0.695 0.308 0.563

[0.271,0.818] [0.283,1.136] [0.191,0.379] [0.288,0.856]

αBN 1.281 1.209 0.750 1.230

[1.081,1.500] [1.000,1.411] [0.517,0.899] [1.001,1.436]

ρb,s 0.126 -0.132 -0.055 -0.018

[-0.485,0.746] [-0.694,0.503] [-0.419,0.352] [-0.671,0.665]

ρz,s -0.156 0.044 -0.027 0.089

[-0.787,0.457] [-0.558,0.753] [-0.306,0.241] [-0.578,0.713]

ρr,s 0.083 0.011 0.138 -0.064

[-0.538,0.718] [-0.670,0.671] [-0.078,0.372] [-0.737,0.559]

ρπ,s 0.065 -0.036 0.743 0.056

[-0.604,0.690] [-0.669,0.632] [0.545,0.950] [-0.601,0.702]

log p(XT ) 61.5134 66.3211 36.2191 38.5321

Prob(det) 1.000 1.000 0.0626 1.0000
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Table 6: Additional Results: 3 observables 1964Q1:1979Q2

Mixed rule Growth rule

log p(XT ) -130.4705 -132.0124

Prob(det) 0.5089 0.4243
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