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Abstract

Many problems plague the estimation of Phillips curves. Among them is the hurdle

that the two key components, inflation expectations and the output gap, are both un-

observed. Traditional remedies include creating reasonable proxies for the notable ab-

sentees or extracting them via some form of assumptions-heavy filtering procedure. I

propose an alternative route: a Hemisphere Neural Network (HNN) whose peculiar

architecture yields a final layer where components can be interpreted as latent states

within a Neural Phillips Curve. There are benefits. First, HNN conducts the supervised

estimation of nonlinearities that arise when translating a high-dimensional set of ob-

served regressors into latent states. Second, computations are fast. Third, forecasts are

economically interpretable. Fourth, inflation volatility can also be predicted by merely

adding a hemisphere to the model. Among other findings, the contribution of real ac-

tivity to inflation appears severely underestimated in traditional econometric specifica-

tions. Also, HNN captures out-of-sample the 2021 upswing in inflation and attributes it

first to an abrupt and sizable disanchoring of the expectations component, followed by

a wildly positive gap starting from late 2020. HNN’s gap unique path comes from dis-

pensing with unemployment and GDP in favor of an amalgam of nonlinearly processed

alternative tightness indicators – some of which are skyrocketing as of early 2022.
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Canada Macro Brownbag Seminar, at the CFE 2021.
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1 Introduction

Few equations are as central to modern macroeconomics and current monetary policy debates as

the Phillips Curve (PC) – and its modern incarnation, the New Keynesian Phillips Curve (NKPC).

Yet, many problems plague its estimation and thus, our understanding of how increasing economic

activity translates into higher pressures on the price level. Similarly, our understanding of how

inflation expectations influence current inflation is also compromised.

This paper focuses on a predictive Phillips curve – building an equation that uses, among other

things, some measure of real activity to forecast inflation. It provides a new solution to an extremely

pervasive problem in empirical inflation modeling and economics research in general. Namely,

the two key components of the NKPC, inflation expectations (Et) and the output gap (gt), are both

unobserved. Instantly, this opens the gates to the proxies’ zoo. Which gap to choose? Which

inflation expectations at what horizon from whom? Those are crucial empirical choices on which

theory is practically silent. Et and gt are necessary to produce and understand inflation forecasts,

both of which are needed to guide monetary policy action – especially entering 2022.

A HEMISPHERE NEURAL NETWORK. Taking a step back, what basic macroeconomic theory tells

us, is that two sufficient statistics summarizing different groups of economic indicators should

predict inflation reasonably well. More precisely, we know that (i) there should exist some abstract

output gap, or in other words, a possibly nonlinear combination of variables related to the state of

the economy (labor markets, industrial production, national accounts) that influence inflation, and

(ii) some combination of price variables (past CPI values and several others) and other measures of

inflation expectations also impact inflation directly. I make this vision operational by developing

a new Deep Neural Network (DNN) architecture coined Hemisphere Neural Network (HNN). As

the name suggests, the DNN is restricted so that its final inflation prediction is the sum of compo-

nents composed from groups of predictors separated at the entrance of the network into different

hemispheres. The peculiar structure allows the interpretation of the final layer’s cells output as

key macroeconomic latent states in a linear equation – the NKPC. Moreover, the estimation of

time-varying PC coefficients and the key latent states is performed within a single model.

While HNN’s development is motivated from inflation, its applicability extends to the various

problems in economics where the link between "theoretical variables" and "Excel variables" is not

crystal clear. Examples include the neutral interest rate, Taylor rules inputs, term premium, and of

great interest recently, "financial conditions" in Adrian et al. (2019)’s quantile regressions of GDP

growth – a non-trivial and non-innocuous modeling choice (Plagborg-Møller et al., 2020). This

extends to poorly measured observed explanatory variables. Thus, econometrically, this paper

develops a new tool, rooted in modern deep learning machinery, to take the mismeasurement

error bull by the horns. Obviously, HNN is by no means the first methodology dealing with latent

state extraction (Harvey, 1990; Durbin and Koopman, 2012) or attenuation bias (Schennach, 2016).
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But, when compared to the older generation of methods, its empirical merits will be decisive.

This paper sits at the intersection of at least four literatures: estimating the output gap, esti-

mating Phillips curves, interpretable artificial intelligence, and the application of deep learning

methods in macroeconomic forecasting. Given how vast those literatures are, the substantial re-

view and discussion of them are relegated to its own Section 3. By blending them into a common

goal, substantial amelioration over traditional methods are attainable. In short, the method has

four key advantages. First, by the virtues of being a supervised learning problem, HNN improves

over methods where gt is extracted from an economic activity series and then thrown in a "second

stage" PC regression. That is, gHNN
t is by construction the most relevant summary statistic of real

activity to explain inflation.

Second, with respect to econometric methods that included some mild form of supervision in

the estimation of gt (Kichian, 1999; Blanchard et al., 2015; Chan et al., 2016, 2018; Hasenzagl et al.,

2018; Jarociński and Lenza, 2018), HNN improves by dropping restrictive law of motion assump-

tions inherent to a state-space methodology. It also handles easily a high-dimensional group of

inputs for both gt and Et and carries computations quickly through standard highly optimized

deep learning software.

Third, nonlinearities in how activity variables translate into gt or Et (and ultimately πt) are

allowed through a deep and wide network architecture with over 2 million parameters. This is,

in fact, a necessary feature given the accumulating evidence that the PC might be nonlinear with

respect to traditional slack indicators (Lindé and Trabandt, 2019; Goulet Coulombe, 2020a; Forbes

et al., 2021). Fourth, with respect to the numerous applications of neural networks in macroeco-

nomic forecasting (see references in Section 3), HNN improves by being interpretable – through

the components of the neural PC. Moreover, unlike most econometric applications of NNs, HNN

fully embrace the implications from double descent phenomenon (Belkin et al., 2019; Hastie et al.,

2019; Bartlett et al., 2020) by being overtly overparametrized and yet providing stellar results.

RESULTS. Two main variants of HNN are proposed. The first one (HNN) is less restrictive on

how exogenous time-variation mixes with other nonlinearities. The caveat is that only the gap’s

contribution to inflation can be extracted from such a model. The second architecture (HNN-F,

the flagship model) has a built-in factorization which allows to disentangle gt’s estimates from its

exogenously time-varying coefficient.

Many new insights are obtained. First, forecasts are typically much better than traditional

PC-based forecasts. Unlike plain DNNs, this can be understood in economic terms. For the post-

2008 period, this can be partly attributed to HNN-F’s gap – projected out-of-sample – closing much

faster than traditional ones, then slips back gently into negative territory in the mid-2010s. HNN

also captures the 2021 upswing in inflation and attributes it first to a rapid disanchoring in the

expectations component, and then to a strongly positive output gap. While both effects’ peak are
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comparable in size to the 1970s, the components show much less persistence than they did four

decades ago—in line with the stop-and-go nature of economic constraints of the Pandemic era.

Second, throughout the whole sample and for both architectures, the contribution of the output

gap component is shown to be much higher than what is reported from time-varying PC regression

with traditional gap measures. Thus, it appears that mismeasuring gt, to no astounding surprise,

can severely bias downward its estimated impact on the price level. Conversely, the effect of the

expectations component is found to be milder overall, with the notable exception of 2021, where it

radically jumps upward while traditional estimates remain flat. Third, the Neural Phillips curve

coefficient in HNN-F is found to have decreased sharply in the early 1980s (somehow suggesting a

break during Volker disinflation) then experience a revival starting from the 2000s. This contrasts

with many traditional PC regressions suggesting the PC was buried in the last decade as a result

of a decades-long decline. As a result, HNN-F – through its positive gap and alive-and-well PC

coefficient – forecasts the inflation awakening of 2021.

A first extension is considered in which an additional "volatility" hemisphere is introduced.

By simply altering the loss function in the software, the family of HNN models can deliver both

forecasts and the expected precision of those. Estimated conditional volatility showcases the usual

Great Moderation pattern, but also volatility blasts in recessions punctuated with rapid move-

ments in oil prices. Accordingly the network signaled ex-ante its cluelessness about 2020Q3 and

2020Q4 but is confident in the upward forecasts of 2021.

As mentioned earlier, the HNN paradigm allows more generally for the supervised estimation

of any latent indicator related to inflation, beyond Et and gt. To that effect, two extensions are con-

sidered. Firstly, HNN-F-4NK extends the latter PC’s to include additional hemispheres for "credit

conditions" and the central bank’s balance sheet, as suggested in Sims and Wu (2019)’s 4 equations

NK model. HNN-F-4NK reports that, as derived in Sims and Wu (2019), favorable credit condi-

tions have a negative marginal impact conditional on other components. In sharp contrast, a simpler

approach with time-varying coefficients including the apparently suitable Chicago Fed National

Financial Conditions Credit Subindex would suggest no such effect exists, or has the opposite sign.

The second extension, HNN-F-IKS, creates, among other things, a supervised composite from a

panel of international GDP growth data. It is found that, overall, and except for a few spikes (like

some during the pandemic), the international "gap" has limited explanatory power for US inflation.

HNN-F-IKS also includes a kitchen sink hemisphere whose variable importance analysis reports

extended use of complementary variables that are all forward-looking in nature – in accord with

theory suggesting inflation is an expected discounted stream of future marginal costs.

OUTLINE. Section 2 introduces HNN, motivates it from the NKPC, and discusses practical aspects.

Section 3 links the new proposition to its numerous predecessors. Section 4 conducts the empirical

analysis and sections 5 and 6 look at aforementioned extensions. Section 7 concludes.
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2 The Architecture

This section discusses the motivation behind the newly proposed network architecture. It all starts

with an expectations-augmented PC, or alternatively a NKPC derived from a linearized plain

vanilla New Keynesian DSGE model (Galí, 2015):

πt = θtEt(πt+1) + γtgt + νt. (1)

In (1), θt and γt are parameters possibly evolving through time, which have lately appeared to be

an empirical necessity (but not in the textbook derivation) in order to accurately describe inflation

in most advanced economies (Blanchard et al., 2015), and νt is noise. Defining expectations less

stringently as Et and acknowledging that empirically, commodity prices ct (energy in particular)

can matter a lot, and may impact πt directly (Hazell et al., 2020), we get

πt = θtEt + γtgt + ζtct + νt (2)

Ultimately, we want those components to forecast inflation. Thus, let us turn (2) into the s-steps

ahead predictive problem

πt+s = θtEt + γtgt + ζtct + νt+s (3)

Essentially, this is a 3-factor model where we can define ht,E = θtEt, ht,g = γtgt, and ht,c = ζtct.

Thus, let Hg, HE , and Hc be the expectations, real activity, and commodities prices hemispheres,

respectively.1 To make this operational, we impose some restrictions on a fully connected NN so

that its ht’s will carry economic meaning A shallow and narrow (for visual convenience) HNN

architecture for the three hemispheres case is displayed in Figure 1.

Some remarks are in order. First, HNN’s architecture is trivially extendable to more than 3

hemispheres. This makes it convenient for splitting some hemispheres in sub-hemispheres (like

expectations into short-run vs. long-run). It also makes it a flexible testing ground for theories

claiming the NKPC should be augmented with something, but that something is not clearly de-

fined in terms of what is in our actual databases. Such extensions are considered in Section 6.

Second, HNN does not give us gt nor γt, but their product h1,g. This is not the neural net-

work’s doing, but rather the design of the problem. With gt and γt both unobserved and possibly

time-varying, they cannot be separately identified without additional assumptions on how gt and

γt should or should not evolve through time. Those assumptions are common but not harmless.

1The terms "gap" and "output gap" are used throughout the paper is a loose fashion, meaning they refer to a generic
latent indicator of economic non-slack. That is, it refers to an abstract gap between aggregate demand and aggregate
supply, not a deviation from the trend of a particular observed measure of economic output. In the context of the
NKPC, HNN’s extraction could also be linked directly to the marginal cost.
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Figure 1: Hemisphere Neural Network’s Architecture, with 3 hemispheres, 2 regressors per hemi-
sphere, and (for each hemisphere) 3 hidden layers of 4 neurons each.

One, implicit to the approaches reviewed in Section 3.1, is to obtain gt from assumptions on its

time series properties and its composition (typically GDP or unemployment) and then treat it as

given in subsequent regressions. Another would be to assume γt = γ ∀t which would deliver

gt identified up to a scaling constant. Less radically, one could posit that γt is only a function of

certain things (like t) excluding what gt is made of, then write some modified HNN where the out-

put of two hemispheres multiplies one another in the last layer – the PC layer. HNN-F, developed

and motivated in Section 2.2, will leverage this restriction to separate the Siamese twins gt and

γt.2 Of course, there are many such restrictions, some more credible than others.The point being

made is that HNN provides ht,g as the most sensible output given the econometric conditions, but

nothing prevents a researcher from splitting it in gt and γt using whichever assumptions he or she

deems reasonable. Nonetheless, for policy purposes, a crucial use of gt is to inform us on how real

activity contributes to πt – and that what HNN spits out directly. Finally, this does not prevent from

comparing HNN results with other methodologies since their gap’s contribution to inflation can

easily be calculated from the PC regression (see Section 4).

Third, a comment on the "separability assumption", which is, for all intents and purposes, the

only binding assumption in HNN. Precisely, by separability, it is meant that ht,j’s are the product

2However, it is noteworthy that uncertain remains surrounding the fact the PC coefficient – using observed (or
simple transformations of) economic data as regressions – is simply driven by exogenous time variation (Stock and
Watson, 2008; Lindé and Trabandt, 2019; Goulet Coulombe, 2020a). HNN-F will work by putting apart nonlinearities
that are of fixed structure through time (the gap), and those that are exogenously evolving.
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of mostly non-overlapping (they share t in common) groups of predictors. of course, it is possible

that the interaction of the prices group and the real activity group influences inflation.3 On the

other hand, some level of separability is what gives interpretability in this high-dimensional envi-

ronment: ht,j’s in a fully connected network are essentially meaningless.4 It is the separation, as

suggested by the (linearized) NKPC, which gives ht,j’s their interesting economic meaning. While

there is nothing sacred about linearized NKPCs, it is noteworthy that the proposed separation is

not new to HNN at all. It is inherent to almost any linear PC estimation (there is a block of lags, and

an output gap, all separated and typically non-interacting). As a side note, some overlap between

the contents of H’s is absolutely possible if the definition of ht,j’s calls for it. Finally, ht,j need

not be orthogonal since they are obtained from supervised learning procedure which dispenses

with most of the traditional identification problems inherent to unsupervised learning (like factors

models estimated by PCA, Stock and Watson (2002)).

Lastly, HNN’s architecture, beyond the uncommon separation, is rather plain. It is not excluded

that, in future work, some extensions of it could further improve its predictive performance and

ability to retrieve latent states. Such extensions, as it often the case in deep learning model building,

would consist in new modules behind inserted into the feed-forward architectures. Two obvious

things come to mind. First, one could bring in "variable selection networks" (Lim et al., 2021)

within each hemisphere to do what its name suggests. Second, one could bring back some of the

older state space paradigm goodies, like a law of motion for gt (which we will obtain from HNN-F

in Section 2.2) by considering recurrent units for neurons outputs entering the PC layer. This could

favor a more persistent estimate of the gap, which may be desirable in certain contexts. However,

all empirical results in Section 4 point out that estimates are reasonably smooth and that extra

smoothness may not be warranted – like when modeling the pandemic era.

2.1 Data and Defining H’s for Benchmark Model

The baseline estimation is at the quarterly frequency using the dataset FRED-QD (McCracken and

Ng, 2020). The latter is publicly available at the Federal Reserve of St-Louis’s website and contains

248 US macroeconomic and financial aggregates observed from 1960Q1. The target considered

main analysis is CPI Inflation (thus πt+1 = ∆log(CPIt+1)). Forecasting and some robustness checks

on gt are conducted using core inflation (s = 1, s meaning steps ahead) and year-over-year (YoY)

headline CPI four quarters ahead (s = 4). The transformations to induce stationarity for predictors

are indicated in McCracken and Ng (2020).

Our empirical baseline model comprises 4 hemispheres. It consists in the 3 described in Section

3Some forecasting results on this will be reported in Section 4.
4Moreover, DNNs tend to make a dense use of inputs (in contrast to sparsity) making the outputs of variable

importance measures for the whole prediction (Breiman, 2001) or partial dependence plots (PDPs, Friedman 2001)
rather inconclusive (Borup et al., 2020).
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Table 1: Defining H’s

H Content

ELR
t t (exogenous time trend)

ESR
t Inflation expectations from SPF, and Michigan Survey, lags of

πt, lags of price indexes in FRED-QD, t
gt Labor Market Variables, Industrial Production Variables, Na-

tional Accounts, t
ct Oil and Gas price series from FRED-QD, Metals PPI, t

2, with one of them being split in two sub-hemispheres. Precisely, to examine them separately, I

split expectations in two additive components: long-run/exogenous (ELR
t ), and short-run (ESR

t ). The

remaining two H’s are real activity and commodity/energy prices. For each variable Xt,k, we in-

clude 4 lags of it and 3 moving averages of order 2, 4, and 8. This is motivated by Goulet Coulombe

et al. (2021)’s so-called Moving Average Rotation of X (MARX) transformation, developed to alter

the implicit prior of certain ML algorithms when applied to time series data – without recoding

them.5 H’s composition details are in Table 1 and the complete list of FRED-QD mnemonics in

available in Appendix A.4.

2.2 Extracting the Output Gap and its Coefficient with HNN-F

As a consequence of sparing HNN from the numerous assumptions typically associated with out-

put gap extraction, the procedure only produces ht,g, the gap’s contribution to inflation, rather than

gt itself. It was discussed that splitting ht,g into gt and γt can be done if the researcher is willing to

assume more about gt and γt. One possible factorization is γt = hγ(t) and gt = hg(Hg \ t).6 The

factorization coerces the PC coefficient to move exogenously and slowly – like what is assumed

by random walk coefficients in Chan, Koop, and Potter (2016) (henceforth CKP) and many others.

This is merely an interpretation device because what we can say of gt and γt depends perfectly on

what we assume they can be. For instance, a convex PC is ruled out by γt = hγ(t) but residual

"convexity" will be mechanically relegated to gt. Nonetheless, what HNN-F provides is a gt which

composition function of real activity data that is constant through time, up to a slow-moving scal-

ing coefficient (γt) – which can be assumed fixed for short- and medium-run forecasting horizons.

Implementing ht,g = hγ(t)hg(Hg \ t) is easy within HNN and the PyTorch (Python) or Torch

(R) environments. First, an additional hemisphere containing only t is created. Then, in the final

layer, rather than summing 3 or 4 ht,j’s as in Figure 1, some last layer outputs will be multiplied

5For instance, in the case of DNNs, early-stopping has been associated with ridge regularization (Raskutti et al.,
2014) and dropout with the spike-and-slab prior (Nalisnick et al., 2019). Goulet Coulombe et al. (2021)’s observation
is that encoding inputs as moving averages change the implicit prior from shrinking every lag coefficient to 0 to
shrinking each of them to one another. In this paper’s application, it also provides the network with inputs where
different frequency ranges have been accentuated.

6Note that Hj \ k means variable k is excluded from the set of predictors included in the hemisphere j.
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together. Namely, the output of the hemisphere containing only t will be multiplied with that

of Hg \ t and the product will be added to the rest of the sum constituting the neural PC. For

consistency, this intuitive factorization is forced on each component. Thus, using the notation

established in (3), the final layer in HNN-F (F for factorized) will be

π̂t+s = hELR(t) + hθ(t)hESR(HESR \ t) + hγ(t)hg(Hg \ t) + hζ(t)hc(Hc \ t) + νt+s. (4)

Clearly, the various ht’s of (4) are not identified, except for hELR(t) since it is not multiplied with

any other component. To identify the relevant ht’s, time-varying coefficient hemisphere outputs

θt, γt and ζt are all forced to be non-negative by feeding them forward through an absolute value

layer before they enter the final layer above. This prevents the gap from being the symmetrical

opposite of what it is expected to be.7

A concern that has often been raised with Phillips Curve estimation is how much the chosen gt

can influence results. Obviously, if

gt = g∗t + errort (5)

and σ2
errort

is time-varying (e.g., higher in the last decades and lower in the early years), we have a

time-varying attenuation bias which can easily create pervasive illusions about the collapse/resur-

gence of the PC. While certainly a valid theoretical worry, most authors have deemed it to be

of limited empirical relevance. Recently, Stock and Watson (2019) considers a variety of (largely

cross-correlated) classical slack measures in turn and find homogeneously pessimistic results about

PC’s current health. In a similar vein, Del Negro et al. (2020) argue that the decline cannot be at-

tributed to increased measurement error since the co-movements between key slack indicators and

marginal cost proxies are very alike pre- and post-1990, whereas the unemployment-inflation rela-

tionship on both subsamples clearly differ. But this was in a very different modeling environment,

mostly grounded in linear econometric modeling with limited data. Moreover, it implicitly as-

sumes that mismeasurement was inexistent or negligible prior to the 1990s – which if true, makes,

for instance, filtered unemployment adequate for that era. HNN-F turns the problem on its head.

By estimating gt flexibly (e.g., not imposing it to be an autoregressive process of some order) and

allowing for γt to vary exogenously through time, HNN-F allow for an investigation of the declin-

ing link between real activity and inflation with a lessened worry that a declining γt be solely due

to a mismeasured gt.

7Various forms of regularization forces the respective scales of gt and γt in estimation. However, they are obvi-
ously not statistically identified and gt’s standard deviation must be fixed and the level of the coefficient γt adjusted
accordingly. In section 4, gt’s standard deviation is set to that of CBO’s output gap to facilitate comparison.
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2.3 Estimation and Tuning

Within each H, we have a standard feed-forward fully connected network. We set layers = 5

and neurons = 400. For HNN, we maximize efficiency by enabling weight sharing (Nowlan and

Hinton, 1992; Bender et al., 2020) across hemispheres. In other words, nonlinear processing pa-

rameters are forced to be identical across hemispheres. In HNN-F, we relax that constraint and the

states hemispheres are given neurons = 400 and layers = 3 while the coefficients hemispheres

(with only input being t) have neurons = 100 and layers = 3.8

The maximal number of epochs (optimizer steps) is fixed at 500. The activation functions are

all ReLU (ReLU(x) = max{0, x}) and the learning rate is 0.005. 85% of the training sample

is used to estimate the parameters and the MSE of the remaining 15% is used to determine when

to optimally stop optimization – early stopping being known to perform a form a ridge regular-

ization on network weights (Raskutti et al., 2014). This random shuffling of data is done through

shuffling blocks of 6 quarters for quarterly data. The batch size is the whole sample and the opti-

mizer is Adam. For forecasting, I do 50 random 85-15 allocations of data and ensemble resulting

predictions. This is beneficial in two aspects. First, it stabilizes the optimal early stopping point

choice. Second, it is known that ensembling overfitting ("interpolating") networks can give a per-

formance similar to that of very large yet computationally costly networks, by among other things,

integrating out noise coming from network weights initialization (d’Ascoli et al., 2020). Finally, I

perform a mild form of dropout by setting the dropout rate to 0.2.

For HNN, we normalize each predictor to have mean 0 and variance 1, which is standard in

regression networks. For HNN-F, since there is no weight sharing, we ought to be more careful in

order not give implicitly some hemisphere a higher prior weight in the network. This could occur,

for instance, if some H has a much larger number of inputs than another. With early stopping per-

forming a type of ridge regularization, it entails the prior that each variable should contribute but

in a mild way. If the real activity group contains 40 times more regressors than the commodities

one, then going for the standard normalization gives a much larger prior weight to its resulting

component by construction. To avoid this scenario, and give equal a priori importance to ht’s, we

divide each standardized Xt,k ∈ Hj by
√

card
(

Hj

)

(the square root of the number of variables

in that hemisphere). The intuition for using such a denominator comes from the fact that if all

variables are mutually uncorrelated and each given a weight of one or minus one (i.e., no learning

beyond what ridge prescribed has taken place), then the variance of the simplistic (linear) compo-

nent ht,j is card
(

Hj

)

. Thus, dividing each member of that group by the square root of it sets each

ht,j’s a priori variance to be 1.

8More layers or neurons beyond that point visibly increase what is apparent noise in the components, and not
improve out-of-bag MSE.
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2.4 Quantifying Uncertainty

Ensembling requirements are higher to conduct inference on ht,j’s and other HNNs’ byproducts.

First, we need more bootstrap replicas. Second, block-subsampling is used to avoid breaking the

serial dependence properties of Zt = [yt Xt]. Blocks of 1.5 years are used. A refined version of

a cross-section analog to this strategy has been popular to assess uncertainty surrounding DNN’s

predictions (Lakshminarayanan et al., 2017).9 In this application, we will be looking at inference on

ht,j’s – functionals of Xt and the network’s weights – which are arguably much more economically

meaningful than predictions themselves. B, the total number of bootstraps, is set to 300 when

looking at ht,j’s and their derivatives. This takes an hour to run on an M1 MacBook Air. Forecasting

necessitates fewer bootstraps – typically less than 40 – for the prediction to stabilize, so HNN is

absolutely amenable to recursive pseudo-out-of-sample exercises where it needs to be re-estimated

many times.

Since any DNN can easily fit the training data much better than it actually does on the test data

(more on this below), it is wiser to opt for an out-of-bag strategy in order to calculate ht,j’s in-sample

as well as their quantiles. More precisely, the calculations proceed as follows. Assume we have a

sample of size 100. We estimate HNN using data points from 1 to 85, and project it "out-of-bag" on

the 15 observations not used in training. This gives us h85:100,b for a single allocation b while h1:85,b

are still NAs. By considering many such random (block) allocations where "bag" and "out-of-bag"

roles are interchanged, I obtain the final ht,j’s by averaging over B at each t such that

ht,j =
1

(1 − 0.85)× B

B

∑
b=1

I(ht,j,b 6= NA)ht,j,b. (6)

This constitutes an approximation to a Block Bayesian Bootstrap by replacing the posterior tree

functional T in Goulet Coulombe (2020a) by HNN. Thus, ht,j,b draws can be used to compute cred-

ible regions. This relies on the connection between Breiman (1996)’s bagging and Rubin (1981)’s

Bayesian Bootstrap, as originally acknowledged by Clyde and Lee (2001), and put forward for ran-

dom forest by Taddy et al. (2015). More recently, Newton et al. (2021) develop a weighted Bayesian

Bootstrap, derive theoretical guarantees, and show its applicability to deep learning. This ma-

chinery is typically used to conduct inference (in the statistical sense) on a model’s prediction.

Goulet Coulombe (2020a) and this paper make it even more useful by focusing on economically

meaningful functionals, like ht,j’s.

How should we think of the statistical adequacy of HNN’s key outputs? There are a number

of proofs of DNN’s nonparametric consistency for generic architectures – for instance Farrell et al.

9Neural Network consistency and inference have also been studied by econometricians in recent years (Farrell
et al., 2021; Parret, 2020). In particular, Farrell et al. (2021) provides a consistency result applying to a generic class of
feedforward DNN architectures which includes the HNN (fundamentally a form of restricted DNN).
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(2021). HNN and HNN-F are restricted DNNs, or, alternatively, semiparametric models. If re-

strictions are approximately true (like the separability in HNN, and the factorization in HNN-F),

then we can be confident our ht,j’s are close to true latent states. Those restrictions can be implicitly

tested by fitting a fully connected DNN with the same data and comparing predictive performance

out-of-sample or out-of-bag. Thus, if HNN increase bias much less than it curbs variance, it will

supplant the plain DNN. It is interesting to note that the restrictions’ benefits are twofold: they

reduce variance and provide interpretability.

Another requirement, in addition to the validity of HNN’s restrictions, is for ht,j to be exempt

from overfitting. This is specifically why out-of-bag ht,j’ are used. Given that HNN also uses

dropout to a mild extent and is optimally early-stopped to maximize hold-out sample perfor-

mance, this additional precaution may not appear necessary at first sight. For instance, one would

not bother to do so with an optimally tuned ridge regression (even if it has more parameters than

observations). However, it is the object of a burgeoning literature of its own that best-performing

DNNs out-of-sample can very well overfit in-sample (Belkin et al., 2019). This obviously compli-

cates things for in-sample analysis of the selected model, and considering out-of-bag estimates is

the hammer solution to that problem.10

3 HNN and its Numerous Ancestors

I now review in greater detail current approaches, how HNN expands on them, and how, by doing

so, it addresses key empirical issues.

3.1 Estimating Output Gaps

There exists many methods to estimate gt, but by far the most popular is to filter either GDP or

unemployment. A significant problem is that those methods perform poorly in real-time. The final

gt estimate can be very far from the gt one had at time t (Orphanides and Norden, 2002; Guay and

St.-Amant, 2005). This problem is known under different names: two-sided vs. one-sided estima-

tion, filtering vs. smoothing, or simply the boundary problem when taking the view that flexibly

detrending a series is a nonparametric estimation problem with t entering the kernel. Fortunately,

there have been many recent contributions providing reliable real time gt, either by developing

more adequate filtering methodologies (Hamilton, 2018; Quast and Wolters, 2020) or by incorpo-

rating more (timely) information (Berger et al., 2020; De Carvalho and Rua, 2017). The objective

is clearly defined: if gt can be extracted from some frequency range of an observed variable, then

10For instance, Goulet Coulombe (2020a) used it for βt’s obtained from a random forest. However, the in-
sample/out-of-sample differential is typically much more pronounced for random forest than for DNN for datasets of
the size typically used in macroeconomics (Goulet Coulombe, 2020c).
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we can obtain it, and we want that estimate of gt to be usable at time t – essentially a nowcasting

problem for a transformed variable.

Taking a step back, there is the deeper question of whether this filtered gt (or that of CBO or the

Fed’s Greenbook) is what we should be after at all, especially that its explanatory power for infla-

tion seems to be vanishing quickly (Blanchard et al., 2015) . From an ML perspective, all the above

approaches can be considered "unsupervised learning" (Friedman et al., 2001). That is, the gap

is typically constructed based on some assumed structure, without consulting inflation. A data-

rich unsupervised approach would be a factor model (à la Stock and Watson (1999) or a dynamic

one like in Barigozzi and Luciani (2018)), or going nonlinear with the now-popular autoencoders

(Goodfellow et al., 2016; Hauzenberger et al., 2020). A fundamental problem plaguing them is that

these methods seek to create latent factors that summarize X regardless of whether they will be

of any relevance to the dependent variable. With a very large X, like one gets from McCracken

and Ng (2020)’s distilled quarterly FRED database, it is unlikely that an unsupervised approach

stumbles upon the "real" output gap by serendipity. In short, most often, statistical factors will lack

explanatory power for inflation, economic meaning, or both.

There are exceptions to the reign of unsupervised learning in output gap estimation (Kichian,

1999; Blanchard et al., 2015; Chan et al., 2016; Hasenzagl et al., 2018; Jarociński and Lenza, 2018).

But then, again, there are some stringent assumptions being made on how gt moves through time

and its composition. Output need not be GDP, and the labor market need not be the unemployment

rate. Jarociński and Lenza (2018) dispense with (most of) the need to choose by considering a

dynamic factor model specification.11 However, in their application, gt is defined as an AR(2)

process12, and such an assumption, while endemic to the state-space paradigm, is not benign.13 In

contrast, HNN takes a fully supervised approach that does not force gt into some tight parametric

law of motion and does not restrict gt to be made of a single variable somehow chosen wisely.

Rather, HNN constructs an implicit deep output gap from writing a nonlinear model where a

basket of real activity variables can be processed and transformed, so that a sufficient statistic ht,1

made from them explains some share of inflation dynamics.

It be would naive, however, to think that HNN, being a neural network with the "universal

approximation" property, is completely devoid of a priori statistical structure within hemispheres.

Indeed, in an environment with little training data, regularization, network structure, and associ-

ated priors all enter the estimates to some extent. This is why careful network design has always

been a staple of deep learning practice, even with vast amounts of data (Goodfellow et al., 2016).

11Nevertheless, Jarociński and Lenza (2018) consider fewer than 10 such variables, and the estimation of dynamic
factor models with a wide panel of regressors is known to be computationally demanding.

12Hasenzagl et al. (2018) rather opt for an ARMA(2,1).
13Indeed, the qualitative shape of gt obtained from their various models changes only slightly from the inclusion of

additional "supervisors", which can either be due to the strength of the common "true" factor, or that the law of motion
is a straitjacket.
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In the case of HNN, that structure, while fully estimable, is that of successive layers of activation

functions.14 As anything in this business, the merits of one structure over another will be propor-

tional to its predictive abilities on the out-of-bag samples, and ultimately, on the hold-out sample.

At first sight, a simpler (and more traditional) supervised approach could be some intricate

form of partial least squares. But this imposes that variables within Hj enter linearly in ht,j, which

rules out, among many other things, the HP-filtered GDP which is itself a nonlinear transformation

of the original data. Augmenting that approach with a kernel could, at a conceptual level, retrieve

nonlinearities. However, kernel approaches and large Xt (or Hj in this paper’s setup) do not mix

well, both computationally and statistically. In contrast, the HNN approach can easily deal with

high-dimensional data on both fronts – through highly optimized yet adjustable software and the

various regularization mechanisms available in DNNs.

3.2 Estimating Phillips Curves

There is an ever-growing literature on the flattening PC – either structural or reduced form, which

was originally sparked from the surprisingly immaterial disinflation during and following the

Great Recession (GR). Standard approaches typically imply one of the following two assumptions

(and sometimes both). First, that the output (or unemployment) gap can be properly extracted by

some form of filtering (Blanchard et al., 2015; Hasenzagl et al., 2018) and second, that the decline in

the gap coefficient can be captured by either slowly moving time-varying parameters (Blanchard

et al., 2015; Galí and Gambetti, 2019) or a well-situated structural break(s) (Stock and Watson, 2019;

Del Negro et al., 2020). However, the true gt may look very different than what filtering suggests

— be it from HP-filtering, Hamilton (2018) filtering, or assuming potential GDP growth rate is a

random walk (or variations on it) within a state-space model (Kichian, 1999; Blanchard et al., 2015;

Chan et al., 2016, 2018; Hasenzagl et al., 2018). In fact, all those statistical methods embed similar

assumptions about the time series properties of gt, and unsurprisingly so, often report very similar

gaps (at least, ex-post). Using one prototypical slack measure or another, all filtered in the same

fashion, also deliver lookalike slack measures (Stock and Watson, 2019). Clearly, if the economic

slack proxy is a poor approximation of reality for some period of time – say, recently –including it

in a subsequent regression model will naturally give the impression of a suddenly dormant PC.

The second assumption, that of a slowly and exogenously declining PC, inherent to most "sec-

ond stage" regressions taking the output gap measure as given, can also be problematic. For in-

stance, there are theoretical reasons to believe the reduced-form PC is convex (Lindé and Trabandt,

2019). Additionally, Goulet Coulombe (2020a) documents, using a machine learning approach, that

the coefficient on HP-filtered unemployment (very close to Blanchard et al. (2015)’s gap) is declin-

14Results are mostly unchanged from changing ReLu to Selu, a softer activation function, and adjusting the learning
rate accordingly.
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ing slowly and exhibit pro-cyclical behavior. In HNN, no restrictive time series and composition

assumptions are made on whether the gap or its attached coefficient – we are simply positing

that there be must be some sufficient statistic of economic activity, be it what it may, having ex-

planatory power for inflation. Thus, it will be possible to quantify how much of the reported PC

decline is attributable to certain methodological choices or to a fundamental decline of the link

between economic activity and inflation. In HNN-F, some of those assumptions are brought back

to split "contributions" into a gap and a coefficient. However, unlike traditional methods, resid-

ual nonlinearity will be captured within gt, making it nonlinear in the original economic variables

space. Nonetheless, comparing HNN and HNN-F results will be informative on how costly it is

to assume an exogenously varying γt (and thus, a factorization) when gt is estimated rather than

(mostly) assumed.

On the inflation forecasting front, things are even murkier. Evidence in favor of PC-based infla-

tion forecasting is at best very weak, with minor or inexistent improvements over simpler bench-

marks like plain autoregressions (Atkeson and Ohanian, 2001; Stock and Watson, 2008; Wright,

2012; Faust and Wright, 2013; Kamber et al., 2018; Quast and Wolters, 2020). Recent extensive eval-

uations for the Euro area (Banbura and Bobeica, 2020) suggest there is a case for some cautious

hope with specifications allowing for flexible trend inflation and an endogenously estimated gap

(still with the aforementioned drawbacks, however). Despite all the evidence on its uneven empir-

ical potency, PCs are still widely used to forecast and understand inflation (Yellen, 2017), mostly

because they are rooted in some basic form of macroeconomic theory. This paper – by suggest-

ing a particular deviation from econometric practice inertia – investigates whether there is more

statistical backing for the practice to be found.

Most of the current discussion has been so far focused on the gap and its coefficient. I now

turn to inflation expectations. Galı and Gertler (1999) sparked a literature evaluating the empirical

of fully rational forward-looking expectations. The outcome of the vast research enterprise that

ensued is unclear, with conclusions about the importance of expectations and the measure of slack

(or marginal cost) often depending on econometric choices (see Mavroeidis et al. (2014)’s exten-

sive review and references therein). For instance, Galı and Gertler (1999) originally found strong

evidence in favor of using the marginal cost as a forcing variable rather than the unemploymen-

t/output gap. Mavroeidis et al. (2014) finds that adding a few years of data to Galı and Gertler

(1999)’s original model overturns this finding, with gaps and marginal costs giving very similar

results. Obviously, this sort of dilemma falls within the scope of problems of HNN can deal with.

Finally, it is also reported that the chosen GMM estimation method, the selected instruments, and

the number of inflation lags all can greatly influence results (Ma, 2002; Guay and Pelgrin, 2004;

Dufour et al., 2006; Mavroeidis et al., 2014). This leads Mavroeidis et al. (2014) to conclude that

research energies would be better spent on radically different approaches (like moving past macro
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data) than minor tweaks within the unpromising (mostly) GMM-based paradigm.

Given the ever-accumulating challenges of GMM estimation and other empirical limitations,

proxying directly for inflation expectations with survey-based data emerged as a popular alterna-

tive to the rigid fully rational expectations (Coibion et al., 2018).15 Obviously, the downside is that

theory provides little to no guidance about what expectations from who should be used (Yellen,

2016). Coibion and Gorodnichenko (2015) provide regression evidence on consumers’ expecta-

tions better approximating firms’ expectations than professional forecasters. Binder (2015) reports

that certain demographic groups’ expectations have more predictive power for future inflation

than others. Meeks and Monti (2019) use a functional principal component approach to summa-

rize the distributional aspect of the expectations from the Michigan survey of consumers (among

others) and finds that the additional information annihilates the role of inflation persistence. It

is noteworthy that these papers almost universally take the unemployment/output gap as given.

Lastly, a recurrent finding from approaches opting for empirical expectations is that deploying an

instrumental variable approach or going for a plain regression typically does not alter results in

any appreciable way (Mavroeidis et al., 2014; Coibion and Gorodnichenko, 2015). Thus, we can be

cautiously confident that HNN should not suffer in any cataclysmic fashion from relying on least

squares estimation.16

This paper, for simplicity and to maximize the length of the historical period being studied,

opts for very standard series of inflation expectations as inputs, like the average expectations from

professional forecasters and consumers surveyed by the University of Michigan. As we will see

in Section 4.2, a nonlinear mixture of those indeed does matter. From a methodological and prac-

tical standpoint, nothing prevents the inclusion of a much richer and heterogeneous set of beliefs

– these would-be additional regressors in HESR . By construction, the HNN procures the optimal

"summary statistic" of such expectations because the nonlinear information compression param-

eters are estimated in a supervised fashion. Thus, HNN could easily digest larger expectations

information sets (like the whole cross-section dimension of a survey, or many quantiles of it) and

provide a nonlinear nonparametric approximation to the "distributional" component entering the

Phillips curves discussed in Meeks and Monti (2019) without the need for manual choices in how

to summarize the distribution. Given that the processing of expectations has become as thorny of

an empirical question as is the choice of the gap (Yellen, 2016), HNN provides a convenient gener-

alization of previous approaches that can convincingly deal with gt and ESR
t problems within one

consistent data-driven framework.
15Early adopters include (but are not limited to) Roberts (1995), Rudebusch (2002), Dufour et al. (2006), Fuhrer and

Olivei (2010), and Nunes (2010).
16However, there is nothing at a conceptual level that would prevent the extension of the forecasting HNN to a

simultaneous GMM-based HNN (a change of loss function in the software) in future work.
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3.3 Neural Networks and Macroeconomic Forecasting

The application of AI methods, and more particularly deep neural networks, has not generally, un-

til now, delivered game-changing results when applied to macroeconomic data. At the same time,

a careful reading of the deep learning literature reveals that it is the construction of deep neural

networks (DNNs) architectures specialized for a given problem that gives the phenomenal results

that have contributed to its great popularity (Goodfellow et al., 2016). In stark contrast, most of

the literature in macroeconomic forecasting typically uses architectures already available (and de-

veloped for other tasks such as image or language recognition), with typically limited forecasting

gains and even more limited interpretability.

The origin of NNs in macroeconomic forecasting can be traced back, at least, to Kuan and

White (1994), Swanson and White (1997), and other works by Halbert White. A small literature

follows in the 2000s (e.g., Moshiri and Cameron 2000; Nakamura 2005; Medeiros et al. 2006; Mar-

cellino 2008). With DNN recent successes in many fields, there is a resurgence of interest in using

for macroeconomic forecasting. Most focus on using plain NNs (Choudhary and Haider, 2012;

Goulet Coulombe et al., 2019), or refined architectures like CNNs (Smalter Hall and Cook, 2017)

and various forms of recurrent NNs (Almosova and Andresen, 2019; Verstyuk, 2020; Paranhos,

2021). Some develop architecture inspired by accounting relationships within aggregates (Barkan

et al., 2020). Others have used autoencoders to estimate nonlinear (unsupervised) factors mod-

els — see Andreini et al. (2020) and many others, like Hauzenberger et al. (2020) applying it to

inflation forecasting.

Outside of the direct vicinity of the macroeconomic forecasting literature, there is a growing

interest in generalizing the older generation of time series models to the deep learning framework

(see Sezer et al. (2020) and the many references therein). Two obvious examples are the autore-

gression (DeepAR, Salinas et al. 2020) and the factor model (deep factors, Wang et al. 2019). In

comparison, HNN is tailored for inflation by incorporating minimal "theoretical’ restrictions which

allow the last layer’s outputs to be understood as economic states – rather than, for instance, the

notoriously hard to interpret (deep or not) statistical factors.

As a statistical model, HNN (not HNN-F) is a generalized additive model (Hastie and Tibshi-

rani, 2017) where more than one regressor is allowed to enter each linearly separated nonpara-

metric function, and all functions are learned simultaneously through a gradient-based approach

(as opposed to sequential model building through a greedy algorithm). In that sense, HNN fits

within what Hothorn et al. (2010) defines as structure-based additive models. HNN-F could be

seen to be on the fringe of it, with its multiplicative effects that would certainly be an odd mod-

eling choice without a time-varying unobserved components regression in mind. Closely related,

Agarwal et al. (2020), O’Neill et al. (2021), and Rügamer et al. (2020) all develop an architecture in-

spired from generalized additive models to enhance interpretability in deep networks for generic
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tasks. While these articles certainly tackle some of the opacity issues coming from nonparametric

nonlinear estimation with deep learning, none address those that are inherent to any non-sparse

high-dimensional (even linear) regression–i.e., that analyzing partial derivatives of 200 things that

typically co-move together unfortunately borders on the meaningless. In macroeconometrics, the

dominant solutions have been factor models and sparsity (either explicit or implicit). The former

is not-so-interpretable in the end because most factors are nameless and their unsupervised ex-

traction comes with a series of untestable identification restrictions. The latter can be wrong for

various reasons already mentioned in this text. HNN and HNN-F core innovation is the obser-

vation that grouping variables in hemispheres and combining their outputs according to "theory"

opens a gateway to interpret the high-dimensional nonlinear black box as a sparse linear unob-

served components model.

4 Analysis

As starting point, ht’s are displayed in Figure 2 for a training sample ending in 2019Q4. Figure 16

(appendix) reports largely unchanged estimates from using a training sample ending in 2007. First,

we observe large positive contributions of ht,g to πt in 1970s and 1980s which have been much

more muted since then, in line with the declining PC narrative (this will be formally assessed

when looking at γt in Figure 5). But that was before the pandemic. HNN-F and HNN (Figure

15) both report an extremely high positive contribution from gt to πt+1 starting from late 2020–

as projected from a fixed structure estimated up until 2019. As a result, HNN-F’s (and HNN as

well) are forecasting annualized headline inflation consistently above 4.5 starting from 2020Q4 (see

Figures 4b and 7b). While this finding lends support for the view that inflation’s comeback was

rooted in economic fundamentals (and potentially caused by a cocktail of expansionist policies,

Blanchard 2021; Goodhart and Pradhan 2021; Gagnon 2021), it is not entirely inconsistent – at least

statistically – with the possibility of the inflation surge ending rapidly. Indeed, contribution and

gaps estimates in the Pandemic era move up and down at a much faster rate than that of previous

recessions (along, among other things, public health policies), and it seems possible (statistically,

at least) that gt closes as fast as it opened. However, as of 2021Q3 data (i.e., excluding the Omicron

surge), gt seems now firmly stationed in positive territory. Moreover, HNN’s estimation of ht,g

support the growing evidence that the PC is highly nonlinear in traditional economic indicators space

and that the steep part of it has simply been unsolicited in recent decades (Lindé and Trabandt,

2019; Goulet Coulombe, 2020a; Forbes et al., 2021).

ht,g estimates of the last 2 years cast some doubts on methodologies forcing smoothness through

laws of motion. Those typically require potential output to trend upward slowly (a random walk,

or local-level process) whereas it has been subject to important and rapid downward or upward
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Figure 2: Contributions (ht,j’s) from HNN-F. Notes: Dashed line is the beginning of the out-of-sample. NBER reces-
sions are in pink shadowing. Gray shading is the 68% credible region.

swings due to "COVID-19 shocks" (Blanchard, 2021). Among other things, there are constraints on

production that did not exist in 2019 and many Americans have exited the workforce in 2020-2021

not to return just yet. This trend has a name – the Great Resignation – and can be seen in the partic-

ipation rates as of late 2021. Capturing the conjunction of these phenomena statistically using data

through 2019Q4, HNN’s gt is reported in section 4.2 to heavily use a nonlinearly processed Help-

Wanted Index–which has hit all-times highs in recent quarters. Further reinforcing the view that

gt is as positive as HNN estimates it to be, coming from the demand side, reallocation shocks puts

some sectors are under considerable stress for increased production. Also, a significant amount of

resources is now dedicated to producing new goods and services (vaccines, tests, etc.) which are

partly procured free of charge by governments and do not appreciably crowd out private spend-

ing – which itself has been galvanized by fiscal and monetary policies. Thus, private consumption

has caught up with its pre-pandemic trend while government expenditures are magnitudes larger

than they were back in 2019, making for the total of the two largely surpassing pre-pandemic lev-

els. The purposes of this discussion is not to review every aspect of inflation commentary in 2021

and early 2022, but to highlight that there are plausible economic arguments rationalizing HNN’s

seemingly unusual findings – in addition to the plethora of statistical ones reported in this work.

Contribution of the ESR
t component was extremely strong during the 1970s and has been liter-

ally shut down since the beginning of Paul Volker’s chairmanship – at least, until early 2021. The
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hibernating hESR,t woke up, and captures nicely the consequences of supply chain disruptions and

the general sentiment in the media and population that inflation could be back. By doing so, it pro-

cures relatively accurate inflation forecasts for the turbulent 2021. This will be further discussed

in Section 4.1. It appears that the main reason why inflation forecasts did not climb to 1970s levels

in late 2021 is hELR,t, which despite its earlier spike, shows much less persistence than 4-5 decades

ago. Said differently, expectations are still relatively well-anchored, by not deviating persistently

from the long-run ones.

Additionally, gentle upward spikes are observed post-GR which lend some support to Coibion

and Gorodnichenko (2015)’s point that higher expectations following the financial crisis can ex-

plain the missing disinflation puzzle. In Figure 19 (from ablation studies in Appendix A.2), this

nonlinear pattern is even more apparent from dropping some of the more volatile inputs from

HESR . Finally, the commodity group (with oil being naturally its most influential member) con-

tributed strongly, to nobody’s surprise, from the first oil crisis of the 1970s, through the second

oil shock, and ends after the second of the twin recessions. Finally, hELR,t is found to be slowly

decreasing, as expected. Note that the overall level of hELR,t is not identified separately from hESR,t

and here it was set by normalizing the other three components to have mean zero over the sample.

Since gaps themselves rather than contributions are what is typically reported, Figure 3 re-

ports contributions from a canonical PC regression for comparison purposes. In the case of "CBO",

those are constructed from a traditional PC specification (including 2 lags of πt and the gap) with

time-varying coefficients obtained from Goulet Coulombe (2020b) two-steps ridge regression ap-

proach.17 Contributions are interesting in their own right because, unlike gaps and coefficients,

they are completely identified and expressed in "inflation units". The difference between HNN-F

and alternatives is striking for ht,g, with the latter giving real activity much less weight in driv-

ing inflation than what the former reports. This is especially true in the 1970s and 1980s, but also

from recent years. From an ocular spectral analysis standpoint, it is clear that hHNN
t,g includes much

higher frequencies than what traditional gaps/contributions do. hHNN
t,g is prone to rapid spikes

that the alternatives completely forego (e.g., the mid-1980s, the years preceding the 1990s reces-

sion,and the mid 1990s). It is worth remembering the reader that the frequency range for classical

estimators is not an outcome but an assumption – which is explicit in the case of band-pass filters

(Guay and St.-Amant, 2005).

"HNN-F CBO", which replaces all the activity data in Hg by the CBO gap itself – thus keeping

all the other modeling ingredients from HNN – partly helps in understanding this wedge. Indeed,

the green and red line follow each other closely each except following the 1981-1982 and 2008-

17Conveniently, the procedure incorporates a cross-validation step that determines the optimal level of time varia-
tion in the random walks and a second step that allows in a data-driven way for some parameters to vary more and
some other less. Typically, results from the ridge regression are very similar (but overall less erratic) to what obtained
using a typical Kalman filter approach (the R function tvp.reg) or kernel smoothing (from the R package tvReg)
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(a) Contributions of economic activity to inflation. (b) Contributions of expectations to inflation.
Figure 3: Comparing estimated contributions. Notes: all estimations end in 2019 and are projected using the out-of-
sample data from there. Pink shading is NBER recessions. "CBO" is the estimated contribution from a PC regression
using the CBO output gap as forcing variable. CKP means the estimated contribution as extracted from Chan et al.
(2016)’s model. "HNN-F CBO" means that all the data entering Hg was replaced by the CBO gap (and keeping t) and
an HNN was rerun. "HNN-F (only lags)" means that all the data entering HE was replaced by lags of πt (and keeping
t) and an HNN was rerun. In the case of expectations, ELR

t + ESR
t is plotted for HNN and the plot for "CBO" is the sum

of the two lags plus the time-varying intercept. Analogous calculations are carried for CKP.

2009 recessions. "HNN-F CBO" seems to use nonlinearities to avoid to the two very negative

contributions from the PC regression. Nonetheless, it is clear that a key difference between HNN

and the canonical regression is the nonlinear processing of a rich real activity data set. Finally,

only the classic PC regression and Chan et al. (2016)’s gap (CKP) calls from a deep and lasting

negative output gap following 2008. "HNN-F CBO" circumvent it interacting with a small implicit

γt and HNN follows a very different pattern where the gap closes rapidly (as early as 2011) but

remains gently in negative territory at least until 2018. Finally, from the early 1990s up until the

GR, both "CBO" and "CKP" contributions are practically 0 whereas HNN-F sees a mild downward

contribution from real activity in the years surrounding the 2001 recession.

HNN’s current estimates differ even more dramatically from that of standard techniques. CKP’s

gap in Figure 5 behaves like most unemployment filtering methods do. It reports strong overheat-

ing in the late 2010s18 and a gently positive gap in late 2021. As we will see in the forecasting results

of section 4.1, this will be largely insufficient as upward forcing to obtain well-centered forecasts

during that period. This is no surprise: this approach yields an output gap which is mostly neg-

ative throughout the Pandemic and the PC coefficient is small. Berger et al. (2020)’s multivariate

approach reports online a positive gap as of January 12th 2022 that is comparable in size to that

of the end of the last two expansions (unlike HNN which sees mostly unprecedented inflationary

pressures starting from 2020Q4). Also, Hazell et al. (2020) (and their updated estimates here) utilize

an extremely persistent ARMA(2,1) output gap (looking very much like filtered unemployment),

which allegedly pushes the model to explain the data with an energy price cycle. As per Figure 2

18This is because the trend has been adjusted downward by then,. Estimates including COVID-19 observations
make this even more pronounced.
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(and eventually even clearer in Figure 17), the direct role of commodity prices has become more

muted in recent years – a finding likely due to HNN allowing for a more flexible gt. This debate is

important: different decompositions imply different policy recommendations. While HNN ht,g’s

unequivocally calls for a tightening of monetary policy, during times of sectoral reallocation, the

divine coincidence is broken, leading to an "optimal" level of inflation that is easily above the target

(Guerrieri et al., 2021). Obviously, letting inflation sit for a while above the target range comes at

the risk of disanchoring expectations which were anchored at great cost long ago.

In Figure 3b, it is striking that, unlike Figure 3a, HNN and its altered version form a cluster. This

suggests that the information contained in HE beyond lags of πt only seldom makes a difference

— although it makes all the difference for latest inflation upswing. It is also obvious that HNNs

allocated a much smaller fraction of inflation to expectations, which is particularly visible from

the 1970s inflation spirals (mostly the second) and the 1980s. One way to explain this is that a

mispecified gt led to put an excessive burden on explanation on πt lagged values.

(a) Absolute Contributions to π̂t (b) π̂t decomposition
Figure 4: Summed contributions from the four H’s through time. Notes: all estimation ends in 2019 and are projected
out-of-sample from there. For the specification details yielding "CKP" and "CBO" estimates, see notes of Figure 3. Pink
shading is NBER recessions.

Figure 4 reports inflation shares in two ways. In Figure 4a, the decline of the overall influence

of ESR
t in favor of ELR

t , with the emergence of trend inflation dominance in the mid-1990s. ESR
t peak

contributions are with the 3 inflation spirals of the 1970s, and to a lesser extent the mild increase

from the end of the 1980s. The share of ht,g is much more stable than what typically reported by PC

regressions although it appears to be milder (in a very subtle fashion) starting from the 2000s. The

effect of energy and commodity prices appears stable. Figure 4b makes clear that key historical

increases are always due in large part to ELR
t , including that of 2021. A key pattern is an initially

mild positive contribution from gt followed by a large and lasting upswing in the blue component.

HNN successes and failures in forecasting post-2019 inflation can be easily understood from

Figure 4b. The "overkill" downswing is entirely due to the real activity component, and the in-

crease in first half of 2021 is due to a pattern very similar to the 1970s being replicated, that is, a
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gentle positive impulse from gt followed by a sizable upward pressure from ESR
t . A noteworthy

observation is that ESR
t appeared dormant until 2021, like in the "PC reg" and "HNN (only lags)"

specifications of Figure 3b, while it truly was not. Its spectacular awakening from nearly 3 decades

of hibernation, most likely due to unsolicited nonlinearities now being useful, is what makes HNN

forecasts of 2021 on point whereas other PC-based forecasts fail — their coefficients are so weak

that resulting forecasts often look close to straight lines.

So far, the focus has been on ht,g. As discussed in Section 2.2, HNN-F allows for a separate in-

spection of gt and γt. Figure 5 reports them for the estimation ending in 2019Q4. Unlike recessions

that preceded it, the GR is characterized by a rapid yet incomplete closing of the gap. Interestingly,

this mildly negative gap lasting for a decade coincides in part with the so-called missing inflation

era. This observation – a rapidly closing gap followed by a long slightly negative one – is found

whether we estimate the model using data up to today, or end estimation in 2007. Thus, HNN-F

is not reverse engineering a gt to fit the post-GR inflation data. Moreover, the rapid closing of gt

following the GR is not observed for the early 1990s and 2000s recessions. This distinction is even

clearer when using the less volatile Core CPI as supervising variable in Figure 9. Thus, what is

observed for gt in the early 2010s is not due to it always closing faster, perhaps in a mechanical

way.

Figure 5: HNN-F’s gap (gt) and associated coefficient (γt). Notes: Dashed line is the beginning of the out-of-sample.
NBER recessions are in pink shadowing. Gray shading is the 68% credible region. See Figure 3 for specifications
details.

What about γt, the widely studied evolving coefficient of the PC? The evidence in Figure 5 is in

partial agreement with the recent literature on the matter (Blanchard, 2016; Galí, 2015; Del Negro

et al., 2020) in the sense that the exogenously time-varying γt has been decreasing. However, there

are many notable differences. First, there seem to be a break around 1980, in the midst of Volker

disinflation, where γt ’s decline substantially accelerates. Second, unlike results from standard

approaches, γt is not found to decline further following 2008, but rather to increase gently. Results
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including COVID-19 data suggests an even stronger pickup of HNN-F’s γt in the last 12 years.

These observations are in sharp contrast with Blanchard (2016)’s findings using a (supervised)

filtered unemployment gap. They report a slowly decaying γt that gets even closer to 0 following

the GR, which is very close to CKP-based results (the red line) obtained in Figure 5. Stock and

Watson (2019) report very similar results for a plethora of slack measures (albeit all of them being

strongly correlated with each other), with coefficients being all in the vicinity of 0 for the 2000-

2018 period. Also using unemployment as real activity indicator but identifying γt with cross-

sectional variation (US States), Hazell et al. (2020) also find a small PC coefficient. Given how

different HNN-F’s gt is with respect to traditional detrended GDPs, filtered unemployment, and

other neighboring alternatives, γHNN
t atypical vivacity is not entirely surprising. All in all, HNN-F

results suggest that, yes, there exist a measure of slack which effect on πt+1 has been appreciable

and mostly stable over the last 4 decades —and that is not filtered unemployment.

A relevant statistical question is whether HNN could be prone to rewriting history — because

many of the gap estimation methods based on plain filtering are (Orphanides and Norden, 2002;

Guay and St.-Amant, 2005). Figure 6 suggest that HNN-F’s estimation of gt’s to be rather sta-

ble, with the qualitative patterns observed in Figure 5 being completely intact. There are some

mild quantitative disagreements between the 2000 version and the remaining four, especially for

the positive ht,g preceding the crisis. As for the aftermath of the crisis and the 2010s, there are

some mild quantitative disagreement but the pattern – strikingly different from those of tradi-

tional methods – is the same across specifications. That is, we get a major but short-lived dip

following the crisis, a brief comeback to 0, then a long mildly negative phase up until 2018. All

estimations agree on economic pressures on inflation increasing from the mid 2010s up until the

Pandemic., with a slight disagreement on the overall level of gt. Historical results are robust to the

inclusion/exclusion of wild pandemic observations and gt movements are rather similar whether

they are projected out-of-sample from 2019 or using all the data up until today. The quantitative

discrepancy between the 2019 and the full-sample versions is obviously larger during 2020, but

so is estimation uncertainty. The 2020-2021 data has the effect of dampening the gaps movement

in the last 2 years because the algorithm attempts to minimize (now in-sample) the large forecast

error for 2020Q3, an observation that should be in fact discarded with dummies. Overall, results

with training ending in 2019Q4 were preferred as benchmarks since COVID-19 observations have

an extremely high level of volatility attached to them and one simple way to statistically account

for that is to drop them (Lenza and Primiceri, 2020; Schorfheide and Song, 2020). Moreover, it

allows to evaluate whether a statistical model that has not seen 2021.

Many ingredients enter HNN for it to deliver the gap and expectations reported in this section.

Dispensing with some of them helps in understanding the respective contribution of each. In

Appendix A.2, I conduct an ablation study where HNN is deprived, in turns, of the large data set
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Figure 6: gt’s estimated on various training sets. The left panel is zooming on the [−7.5, 7.5] range of the right panel.

and the nonlinear supervised processing. In short, the combination of both appears essential. For

instance, one could wonder if the use of a data set partly populated by growth rates – rather than

levels or deviations from them – could have been a factor behind HNN’s success that has little

to do with HNN itself. It turns that no: the linear unsupervised processing of the same data set

produces a gt that remains below 0 or in the vicinity of it throughout 2021.

4.1 Forecasting

4.1.1 Setup

The pseudo-out-of-sample period starts in 2008Q1 and ends 2021Q3. I use expanding window

estimation from 1961Q3. HNNs are re-estimated and tuned every 4 quarters. Following standard

practice, the quality of point forecasts is evaluated using the root Mean Square Error (MSE). For

the out-of-sample (OOS) forecasted values at time t for s ∈ {1, 4}:

RMSEs,m =

√

1
#OOS ∑

t∈OOS
(πt:(t+s) − π̂t,s)2.

Three targets are considered. First, CPI(s = 1), which is the supervisor in the benchmark HNN

specifications. Additionally, the alternative supervisors eventually studied in Section 4.3 – CPI

average inflation from t to t + 4 (πt:(t+4) = ∑
4
s′=1 πt+s′) and Core CPI(s = 1) – are considered.

Performance results are reported including and excluding 2020 observations.19 As we will see in

Section 5, while NNs in general provide erroneous forecasts for 2020Q3 and 2020Q4, an extended

19The exclusion zone is extended to 2021Q1-Q2 for 4 quarters ahead forecasts for the simple reason that they were
made during the depth of 2020Q1-Q2 and the models propagate a year later what it thinks is an unusually large
negative (yet typical in composition) demand shock.
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HNN-F which models both the conditional mean and the conditional variance predicts unprece-

dented levels of imprecision for those two forecasts. In contrast, HNN-F is as confident as it gets

for the 2021 projections. Thus, using that timely information, a forecaster would have discarded

2020 forecasts ex-ante (but not those of 2021) in a similar fashion to what the barplots of this section

are doing ex-post.

A few obvious benchmarks from both sides of the aisle are considered. On the ML side, there

is a fully connected neural network with the same hyperparameters as HNN (DNN) and a ran-

dom forest (RF) with default tuning parameters (typically hard to beat). They all use the exact

information set as HNN (variables and aforementioned transformations). Then, there are inflation-

specialized econometric benchmarks of increasing sophistication. First, we have the AR(4) which

will stand as the generic numeraire of reported MSEs. Then, two rolling means are considered,

the one-year mean à la Atkeson and Ohanian (2001) (1y Avg) and a longer-run one (10y Avg).

Bringing in real activity information in, I consider a PC regression (PC, two lags of πt and the CBO

gap) estimated on a rolling window of 15 years to allow for time-varying parameters. Note that

this PC reg is given a handicap by using the latest CBO gap which may have been substantially

revised ex-post — and after observing inflation, the forecasting target. Additionally, an identical

PC regression augmented with two lags of oil prices and survey expectations (PC+) is considered

to match some of the information set in HNN, and more generally specifications inspired from

Coibion and Gorodnichenko (2015). Finally, we consider Chan et al. (2016)’s time-varying bounded

Phillips curve model (CKP) where gt is extracted in a supervised fashion from unemployment by

assuming the natural rate of unemployment to follow a random walk. Key coefficients also follow

random walks. This approach was reported to have sporadic success in forecasting euro area in-

flation (Banbura and Bobeica, 2020) and could be seen as the state-of-the-art Bayesian method to

forecast inflation based on some form of gap. All those non-NN methods are re-estimated every

quarter.

4.1.2 Results

I now report the forecasting performance of HNNs for the three targets and look at their forecasts.

In Figure 7a, HNN and HNN-F are shown to perform well –when excluding the aberrant 2020

observations. In Figure 7b, we understand that HNN’s relative success is due in part to capturing

with reasonable accuracy the recent upswing in inflation. Of course, this achievement is counter-

balanced (within all of out-of-sample) by overly pessimistic forecasts following the dip of 2020. On

the other hand, HNN was not communicated of an unprecedented government-induced economic

shutdown, and a careful use of the model would have discarded the downward spike.

For the 3 targets, HNN and HNN-F forecasts are very close to one another throughout the out-

of-sample. Notable exceptions are the 4 recent quarters for CPI(s = 1) and Core CPI(s = 1) where
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HNN delivers very accurate forecasts and HNN-F performance lives somewhere between that of

HNN and PC+. Nonetheless, both models predict πt+1 being above the target range starting from

2021Q1. While a certain potency during 2021 is common to all deep networks, DNN’s predictions

(unreported), while broadly getting the upward "trend" right, are volatile and are either too high

or too low. During the same period, PC+ visibly acts as an autoregression, pushing the forecast

upward according to previous positive shocks. Additionally, it wrongly calls for largest imma-

terial deflation in the aftermath of 2008, which is, in effect, a classic failing of regression models

predicting inflation with an output gap. HNN and HNN-F are not completely exempted from this

failing for CPI(s = 1) but avoid this predicament CPI(s = 4) and Core CPI(s = 1). One explanation

is the rapid closing of HNN’s gap, for all three supervising variable (see Figure 9 and its discussion

in Section 4.3). The other emerges from Variable Importance results of Section 4.2. Another mod-

ern approach is CKP, based on a Bayesian bivariate state-space model of trend inflation and the

gap. Its reliance on unemployment appears fatal in two historical episodes. First, its forecasts are

consistently too low for most of 2008-2012. Second, its forecasts remain significantly below realiza-

tions for all of 2021. The reason for this is self-evident from Figure 5: de-trended unemployment

rate, the forcing variable, is negative for most of 2021. Thereby, if it forces in any direction, it is

downward, not upward.

Turning to Core CPI, we again see that, leaving out 2020 data, HNNs have the lowest MSEs.

It is noteworthy that the extent of the "2020 forecasts demise" is much smaller for core inflation.

HNN captures reasonably accurately what is, at least since the 1990s, a rise in Core CPI that is

unprecedented in both speed and magnitude. Similarly to headline CPI results, CKP forecasts are

again too low.

For one-year ahead forecasts, Figures 7e and 7f reveal that HNN and HNN-F provide the best

PC-based forecast in the lot, again, when excluding 2020. As mentioned earlier and explored in

detail in section 5, this exclusion can alternatively be motivated from an augmented HNN itself

recognizing that its forecasts are very likely unreliable. Unlike PC+ in Figure 7f, HNN-F and

HNN are not lured into predicting long-lasting disinflation (or even deflation) following the GR—

because HNN-F’s gap is closing as fast as that of the benchmark CPI(s = 1) estimation and γt is

moderately small (see Section 4.3). This, however, does not prevent HNNs from displaying the

Phillips curve relationship in all its vivacity when needed. While NN-based forecasts are more

dispersed for this target, they agree on one thing, an average CPI inflation of 4% from 2020Q4

to 2021Q3 inclusively, which is well above target. In contrast, PC+ calls for a timid 2.5% and CKP

expects inflation to be below the target. The closest competitor is the atheoric 10 years mean. While

their associated MSEs are relatively close, forecasts differ substantially, with HNN-F channeling

information about real activity whereas the rolling mean does what a rolling mean does, i.e., a

semi-flat line.
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(a) MSE wrt AR(4), CPI (b) Forecasts, CPI

(c) MSE wrt AR(4), Core CPI (d) Forecasts, Core CPI

(e) MSE wrt AR(4), CPI (s = 4) (f) Forecasts, CPI (s = 4)
Figure 7: Forecasting Results for 3 targets with test set 2007Q2-2021Q4 and re-estimating NNs every year. Notes:
Pink shading is NBER recessions.

Unsurprisingly, yearly results for 2020 and most of 2021 are not great for any real-activity-based

forecasts, including HNN. In a similar fashion to what reported in Figure 7b, this is due to HNN

and PC regressions not being informed that this is no ordinary recession and that extraordinary

governmental programs have been implemented to life support the economy. This limitation has

even stronger consequences when forecasting πt:(t+4) since the medium-run dynamic transmission

mechanism itself is certainly quite different during the Pandemic than for previous recessions. In

other words, due to an imminent structural break, it is not shocking that HNNs or PC regressions
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are over-pessimistic in the initial and most of the subsequent response of πt:(t+4) the COVID-19

shock. On top of that, one-year ahead inflation is particularly subject to the various pandemic plot

twists which can occur within four quarters.

Overall, barplots of Figure 7 show improvements ranging from 10% to 25% when excluding

2020 observations, with HNN-F and HNN always delivering comparable RMSEs. For all 3 targets,

the closest competitors in terms of RMSE are the rolling 10 years mean, PC+ (which includes the

survey of professional forecasters’ forecast as a predictor), and sometimes Random Forest. For the

former, it is not an uncommon result, especially for a period of relative stability in the 2010s —

and avoiding the perils of calling missing disinflation by construction. But those forecasts cannot

capture what crucially matters for policy: when inflation gets out of its target range. Additionally,

any form of macroeconomic rationale (except that of anchored expectation) is evacuated from those

forecasts. Same is true of the various AR or ARMA configurations. This is, in great part, what still

motivates the use of PC regressions despite their well-documented failings (Yellen, 2017). Thus,

all in all, HNNs fare well by providing reliable forecasts that have economic soundness and can

predict that πt will exit the target range before it does.

4.2 What are the gap and expectations made of?

Unlike simpler data-poor gt estimates – where the modeler decides which variables matter ex-

ante – or data-rich linear ones – where nonlinearities are typically pre-specified (e.g., trend-cycle

decomposition) and we can look at the factor model’s loadings – that of HNN needs additional

computations to understand what it is made of. By construction, gt and ESR
t are combinations of

thousands of parameters nonlinearly processing many regressors. Consequently, looking at net-

work weights by themselves is inherently meaningless. More productively, I investigate which

Xt,k ∈ Hg seems to matter most by designing a variable importance (VI) exercise very much in-

spired from what Goulet Coulombe (2020a) studied for "generalized time-varying parameters" in

a random forest context – which is itself inspired from traditional variable importance measures

for tree ensembles predictions.

I focus on groups of variable k, meaning we will evaluate the overall effect of all transformations

and lags of variable k (as mentioned in section 2.1, we include 4 lags of each and moving averages

of order 2, 4 and 8). The variable importance procedure to evaluate the relevance of variable k

to ht,j can be summarized as follows. VIj
k, for a variable k ∈ Hj, works in three steps. First, we

shuffle randomly variable k (and all its attached transformations, i.e., lags and MARXs). Second,

we recompute (but do not re-estimate) the component hj(X̃t) (using the shuffled data for k and the

original data for all other variables). Third, we calculate its distance to the real component estimate
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hj(Xt). Formally, the standardized VIj
k, in terms of % of increase in MSE, is

VIj
k = 100 ×

(

1
T ∑

T
t=1(hj(X̃t)− hj(Xt))2

Var(hj(Xt))
− 1

)

. (7)

Intuitively, randomizing important variables will push ht,j further from its original estimate than

randomizing useless ones.

(a) Gap (gt) (b) Short-Run Expectations (ESR
t )

Figure 8: VI Results for benchmark HNN-F specification, with training ending in 2019Q4. Mnemonics are those of
FRED-QD (McCracken and Ng, 2020).

VI results are reported in Figure 8. Here are key observations for VIg. First, AWHMAN’s (av-

erage weekly hours in the manufacturing sector) predominance for gt suggest an important for

the intensive margin, whereas typical labor-based gap measures are mostly about extensive margin

(like filtered unemployment). Recently, Bulligan et al. (2019) find the former can complement the

latter as forcing variables in linear PCs for Euro area (but not the US). Second, the composite Help-

Wanted Index (HWIx) of Barnichon (2010) –which McCracken and Ng (2020) splice earlier in the

sample with the original Conference Board product for "print" job postings – is shown to play an

important role. Intuitively, the index, by construction, characterizes increased labor demand (and

perhaps shortages) which is expected, by economic theory, to translate in higher wages, and even-

tually, higher aggregate prices. This partly explains the very positive gap in Figure 5 since HWIx is

effectively skyrocketing as of late 2021 despite being largely stagnant in 2018 and 2019. However,

this not the whole story: nonlinear neural processing of HWIx seems essential as reported in the

ablation study (Appendix A.2). In Figure 18 (Appendix), we see that, at times, the unemployment

rate and HWIx were closely related, like during 1990s and the 2000s. But other times they were

not, like the 1970s and in a very striking fashion, right now. Moreover, their acceleration rate can
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differ in key recession and expansion episodes. By putting its money on some transformation of

HWIx , HNN leveraged historical patterns to avoid relying on less potent forcing variables. As we

now know, those are directly responsible for the failure of traditional PC forecasts in 2021 (Figures

5 and 7).

Remaining variables that are marginally more important than the rest are typically related to

employment levels in different sections. Third, GDP and associated measures seem unimportant,

so is the unemployment rate. The only traditional gap measure making an appearance in VIg’s top

25 is total capacity utilization (TCU), which, interestingly, is also the one among them delivering

(after some filtering) the fastest closing of the gap following the great recession in Stock and Watson

(2019) (see their Chart 3).20

Turning to VIESR , we see that a handful of very familiar variables dominate the top 25. First,

the obvious preponderance of the University of Michigan Survey of Consumer Inflation Expec-

tations (inf_mich) strengthen the case for the increasingly popular practice of using survey ex-

pectations in PC regressions (Binder, 2015; Coibion and Gorodnichenko, 2015; Coibion et al., 2018;

Meeks and Monti, 2019). It also completes the explanation as to why HNN-F forecasts did not

call for lasting disinflation following the GR. That is, as suggested by Coibion and Gorodnichenko

(2015), proxying expectations using survey expectations rather than, say, lags of the CPI, procures

more accurate post-2008 predictions. HNN learned that prior to 2007 by putting a high weight

on inf_mich. Nonetheless, VIESR suggests mixing in expectations from different economic agents

and formulated for different horizons seems more appropriate, which is in line with recent results

for simpler regression models in Banbura et al. (2021). There is also a minor role for "backward-

looking expectations" or "inflation persistence" as characterized by the presence of lags of the CPI

(Ylag) in the top 4.

Lastly, we see the overall producer price index (PPIACO) and the PPI for crude materials for fur-

ther processing (WPSID62) being marginally more important than the remaining variables. These

contribute information about cost-push shocks that producers will eventually pass in part to con-

sumers. These enter the model in second-differences of the log (following the transformation sug-

gested in McCracken and Ng (2020)) and thus represents "acceleration rates".21 Looking at those

time series reveals that the highest acceleration on record (since 1960) was recorded for both vari-

ables in the third quarter of 2020. Consequently, the visually obvious spike (that is not necessarily

unique to those two series) is arguably what is driving the flash disanchoring of ESR
t .

20In unreported results, a traditional HP-filtered unemployment and the CBO gap were included within Hg. The
estimate of gt did not budge and the two gaps were excluded from the VI’s top 25. In more traditional econometric
analysis, Berger et al. (2021) report that the unemployment rate may dilute the cyclical information ones wishes to
extract for gt, making alternatives measures attractive for output gap estimation.

21Longer-run information is not completely discarded for those series as moving average terms (which use is moti-
vated from Goulet Coulombe et al. (2021)’s MARX argument) are in fact partial sums of lags.
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4.3 Changing Supervisors

The deep output gap and associated results from HNN have been learned through supervision

with headline inflation. Changing supervisors could alter results. For instance, it has been reported

recently and less recently that alternative measures of inflation – typically stripped-down version

of the CPI designed to be less volatile – can deliver different results, for instance, about the strength

of the PC (Morel et al., 2013; Ball and Mazumder, 2019; Stock and Watson, 2019; Luciani, 2020).

Making a deep dive in the pool of alternatives CPI is left for future work, but investigating trivial

alternatives can be informative on the robustness of gt and the mechanics of HNN. In this section,

I report gt’s and γt’s obtained from HNN-F with two alternative supervisors that were introduced

in the forecasting experiment (Section 4.1). The first is Core CPI (headline minus food and energy).

The second is the average inflation rate over the forthcoming year. Tuning and architecture details

remain intact from Section 2.3, except that dropout is turned off for these two less noisy targets.

Figure 9: HNN-F gaps and associated coefficients with alternative supervisors. Notes: Dashed line is the beginning
of the out-of-sample. NBER recessions are in pink shadowing. Gray shading is the 68% credible region.

Estimation results reported in Figure 9 are suggestive that there is such a thing as a unique real

activity latent state driving future inflation for various horizons.22 All gt’s follow a clear common

pattern, with that of yearly inflation showing larger amplitudes than one quarter ahead πt up to

1990, and that Core CPI being slightly less. All gaps close relatively slowly following the early

2000s recession (with Core CPI’s gap closing the slowest of the 3) and all close extremely fast

following the GR. They also share a common arc-shaped mildly negative gap from 2011 to the

onset of the COVID-19 era. During the pandemic, the general pattern is again common to all three

but magnitudes differ substantially, in line with the wide uncertainty of the last two years. For

instance, gt obtained from CPI (benchmark) is dissenting from those of CPI Core and YoY CPI by

calling for a negative gap in 2021Q2 . The other two gt’s remain (very) positive from the end of

2020, which is the basis for their respective upward forecasts in 2021 reported in Figure 7.

22A natural extension of this paper’s framework would be to consider multiple targets – namely all horizons from 1
to, say, 8 quarters – and extract a common gap.
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In terms of coefficients (γt’s), those are typically lower for both alternatives supervisors, and

so is their revival in the 2000s, with that of γCore
t being practically non-existent. Credible regions

suggest slack’s contribution to inflation is similar for the CPI at s = 1 and s = 4. γCore
t ’s overall

level suggests a slightly lower passthrough from real activity to core inflation. Nevertheless, the

main message from the previous section stands still: there is a nonlinear measure of real activity

which still impacts inflation greatly and drives current (mostly on-point) forecasts – much more

than what one may obtain from a plethora of classical gaps.

In Appendix A.3, a more radical departure from the benchmark specification is conducted with

the federal fund rate replacing inflation as supervisor. Accordingly, this last gap is extracted from

a Taylor rule rather than a PC and will represent the gt the Fed "has in mind". Interestingly, the

resulting gap looks more like a traditional filtered one, suggesting there may a gap between the

monetary authority’s view of economic slack (in line with typical econometric estimates used by

economists) and what can rationalize the inflation record.

5 Can HNN Predict its own Demise? On Inflation Volatility

In comparison to trademark AI applications like image recognition and machine translation, the

signal-to-noise ratio is low for most economic applications. This means that a predictive algo-

rithm is fallible to an extent where it becomes useful to also predict volatility — i.e., when it is

more likely to miss its target by larger margins. Econometricians know that all too well and have

proposed a suite of models for conditional heteroscedasticity which have been used extensively in

macroeconometrics and financial econometrics, with stochastic volatility (SV) and (G)ARCH being

respectively the leading paradigms (Engle, 1982; Jacquier et al., 2002). In the case of inflation, the

unobserved components model with stochastic volatility (UC-SV) has been popular for forecasting

purposes (Stock and Watson, 2007) and the time-varying parameter vector autoregression with SV

for structural analysis (Primiceri, 2005).

An important roadblock is that those options are not readily implementable without deviat-

ing significantly from the highly-optimized software environments that make HNN computations

trivial. SV requires Bayesian computations and appears restrictive in the kind of variation it allows

for, especially when compared to the conditional mean function. As a result of it being essentially

a trend-filtering problem for squared residuals, it is unequipped to detect future volatility spikes

in the target series–although it can be adjusted to deal with outliers after the fact Carriero et al.

(2021). Implementing GARCH-like volatility within HNN would be similarly daunting given that

the MLE estimation of simple GARCH models is already challenging in itself (Zumbach, 2000;

Zivot, 2009). Approaches alternating the fit of the conditional mean and the conditional variance

until convergence – à la iterated weighted least squares – are also highly impractical. First, the
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DNN residuals within the training sample can easily be reduced to dust (Belkin et al., 2019), mak-

ing them an unusable target in a secondary conditional variance regression. Second, it is sometimes

difficult to get a single DNN to converge, so alternating between two of them will unlikely deliver.

Lastly, the many bells and whistles of gradient descent (like the Adam optimizer) can make a siz-

able difference. Thus, there is great statistical and computational cost in deviating from the current

implementation of HNN or DNNs in general.

Would not it be nice if it were possible to merely create an additional volatility hemisphere,

and carry HNN estimation practically as is? As it turns out, it is – and only requires changing

HNN’s loss function. The key insight is that Spady and Stouli (2018)’s simultaneous mean-variance

linear regression can be generalized by a HNN with a marginally more sophisticated loss function

(Goulet Coulombe, 2022). For the current application, the least squares problem is replaced by

min
(wm,wv)

T

∑
t=1

{

(

πt+1 − π̂(X t; wm)

hv(X t; wv)

)2

+ 1

}

hv(X t; wv) (8)

where wm are network weights associated with the mean equation, wv those of the volatility hemi-

sphere. ht,v is the conditional standard deviation of shocks and π̂ is the conditional mean function

with the hemispheric structure laid out in (4). Spady and Stouli (2018)’s implementation requires

concentrating out the conditional mean coefficients by leveraging that linear regression coefficients

have a closed-form solution given the volatility parameters. This severe limitation to the broad ap-

plicability of the method is directly remedied by (8), which can be solved directly by any DNN

software after specifying a hemispheric structure. From an optimization point of view, (8) is ex-

pected to be well behaved given that, in the linear special case, Spady and Stouli (2018) show

the above problem is globally convex. This, of course, does imply that such qualities are directly

transferable to the HNN version. Nevertheless, it is suggestive that such an optimization problem

should not be considerably harder than what has been considered up to now.

The remaining details are those pertaining to the structure of the function hv. To account for

both slow changes in the volatility process and rapid changes based on observed data, hv is given

a factorized structure similar to the components of HNN-F. More precisely,

ht,v = hv1(t) exp
[

hv2({Hg,HE ,Hc} \ t)
]

where hv1(t) = 1
3(hγ(t) + hθ(t) + hξ(t)) is enforced and hv2 is given 3 layers of 100 neurons.23

The restriction on hv1 is to co-constrain the long-run movements in the volatility level with that

of the influence of the 3 non-exogenous components of the conditional mean. Note that all ht’s

23Note that hv1(t) will be positive by construction since hγ(t), hθ(t), and hξ(t) are themselves constrained to be
positive for identification purposes in section 4. Additionally, both hv1 and hv2 ’s outputs are normalized to have a
mean of 1, again, to achieve identification.
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(a) Full Sample

(b) Zooming on Particular Episodes
Figure 10: Results for benchmark HNN-F specification with evolving volatility, with training ending in 2019Q4.
In the first panel, the dashed line is the beginning of the out-of-sample. In the second, it is the 2% inflation target.
The Conditional Volatility plot is limited above at 10 for visibility. Gray bands around the predictions are ±1 ht,v as
estimated by HNN. Gray bands around ht,v is the usual 68% credible region obtained from the bootstrap.

are estimated simultaneously so this constraint will affect the resulting time-varying coefficients of

the conditional mean as well. In unreported results, they are largely unchanged compared to the

benchmark HNN-F specification. Thus, hv1 accounts for variations that random walk SV models

could capture while hv2 deals with abrupt changes that a nonlinear GARCH model with many

exogenous regressors could perhaps provide. This last association comes from noting that hv2

could, at least in theory, create ν2
t−1 by nonlinearly processing its inputs (whose includes πt−1). This

observation hints at further developments for sharing parameters across the mean and variance

networks, like having π̂ as a direct input to hv2 . These considerations are evidently beyond the

scope of this paper and are studied in ongoing work (Goulet Coulombe, 2022).

Figure 10 reports results from HNN-F with evolving volatility. The resulting ht,v showcase

diverse kinds of fluctuations. First, we get volatility blasts during all recessions punctuated with
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important fluctuations in the price of oil. This is something that a SV model based on the random

walk – hence putting the accent on longer-run changes – would hardly capture. The various plots

of Figure 10 have a capped y-axis because, as one could expect, the out-of-sample volatility forecast

skyrockets following the first 2020 economic shutdown. In accord with most SV estimations, we

get a significant decline in the volatility level at "rest" during the Great Moderation. Volatility

in the last decade has been comparable to that of non-recession periods of the 1970s. It appears

that the most appropriate "classical" specification of the volatility process would be a 2- or 3-state

switching process based on observables, combined with a slow-moving component. Conveniently,

this augmented HNN-F had learned those patterns nonparametrically using data through 2019Q4.

The highest pre-pandemic volatility peaks – the two inflation spirals of the 1970s – are topped

by a huge margin for the 2020Q3 and 2020Q4 forecasts. As is clearly visible in the second panel

of Figure 10b, HNN-F knows its forecasts are highly uncertain following the unprecedented varia-

tions in macroeconomic indicators. In fact, the bands simply reveal that the network, being handed

only macroeconomic data and no additional information, sees everything as possible. This is not

surprising given how reliant on extrapolations such forecasts are — many inputs exited their usual

range with an unprecedented vigor. HNN completely comes back to its senses in 2021Q1 and ap-

pears confident in its forecasts, whose ±1 ht,v bands effectively exclude the inflation target. In

terms of the quality of point forecasts, those reported in 10a are comparable to those of Figure 7b

for the most part. However, while plain HNN-F predictions in Figure 7b are slightly below the late

2021 realizations, the above version including the volatility hemisphere produces well-centered

forecasts for the tumultuous period.

From an econometric point of view, it appears that this "augmented" HNN can aptly predict the

likelihood of its own demise. This is a highly desirable feature. While providing a strikingly erro-

neous forecast for 2020Q3 in Figure 7b, it communicated its user that, based on historical patterns,

this particular forecast is extremely uncertain. This further motivates the exclusion of 2020 obser-

vations in the barplots of Figure 7 – and based on estimation set in stone in 2019Q4. Observing

the disturbing volatility predictions, a user would look for modeling alternatives such as heuristic

forecasts. In Figure 10b, we see a similar (yet much more moderate) pattern for the 2008 recession

and its aftermath. That is, forecasts are too low for first two quarters of 2009, but the bands widen

in a timely manner to include the realized values.

This section is merely a first step in the direction of time-varying uncertainty prediction within

a single network. Its purpose is to show that yes, HNN can conveniently and flexibly model

inflation volatility while retaining its original advantages.
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6 HNN as an Evaluator or Generator of New Theories

With typical PC regressions often being only mildly supported by the data, there has been a busi-

ness of proposing augmented PCs. Often times, the newly proposed component is either suggested

from formal theory or common sense economic arguments. In both cases, there can be a disconnect

between what is in the database and what comes out of the theory, again compromising the proper

evaluation of the potency of such augmentations. By adding new hemispheres dedicated to the

newcomers, HNN can palliate this problem.

6.1 An Investigation of the 4-Equation NK Model

Sims and Wu (2019) introduce a four-equation New Keynesian model that skillfully blends the

tractability (and the derivation of an explicit Phillips curve) of the canonical 3-equation model

(Galí, 2015) and relevance for analyzing the effects of quantitative easing (QE). As a result of in-

corporating, among other things, financial intermediaries, bonds of different terms, and credit

market shocks, their Phillips curve includes two additional variables beyond those of (1): the real

market value of the monetary authority’s long-term bond portfolio and credit conditions. While

the former is rather clearly defined in terms of observed variables, the latter needs to be proxied,

and ambiguity reigns as to which financial market variable will adequately proxy for "credit con-

ditions". The HNN solution is now obvious: create a H with a myriad of indicators containing

information on the health of credit markets.

The expected signs for coefficients, as derived from theory, is that keeping the output gap fixed,

favorable credit conditions bring inflation downward, and so does an expanding positive central

bank balance sheet. Those signs are obviously those of marginal effects, i.e., when controlling for

the output gap. In this section, I augment HNN-F with two additional hemispheres inspired from

Sims and Wu (2019)’s model. Then, results regarding the effect of credit conditions are compared

to a much simpler model – a PC regression with time-varying parameters that is augmented with

oil prices, the reserves of depository institutions (total and non-borrowed), and, most importantly,

the Chicago Fed National Financial Conditions Credit Subindex.

Figure 11 reports, among other things, the contribution of credit conditions and the Fed ex-

panding balance sheet to πt+1 as estimated from HNN-F. The four original components are largely

unchanged, largely because the additional two are of limited relative importance. Figure 12 reports

results from augmented PC regressions with time-varying parameters. The NFCI is found to have

a negligible impact on πt+1, whereas the credit index created endogenously by HNN-F from the

credit group of variables in FRED-QD (see McCracken and Ng (2020) for the complete list) has an

appreciable effect during certain historical episodes. For instance, there is mild upward pressure

on prices due to tightening credit conditions before and after the early 1990s recession, as well in
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Figure 11: Contributions (ht’s) from HNN-F-4NK. Notes: Dashed line is the beginning of the out-of-sample. NBER
recessions are in pink shadowing. Gray shading is the 68% credible region.

running up to the GR. Also, loose credit conditions and an ever-expanding Fed balance sheet are

credited for very light (direct, not indirectly through the gap) downward pressure on prices during

the mid 2010s. This is, obviously, the direct marginal effect, keeping the gap fixed.

In Figure 12, the HNN credit conditions index shares some peaks and troughs with NFCI-Credit

and mostly overall NFCI, but, all in all, they are only mildly correlated. As a result, compared to a

more traditional test of the 4-NK model, we get a much larger (and correctly signed24) coefficient

for credit conditions in HNN. This is explained by HNN’s index being active during certain peri-

ods while either NFCI-Credit is essentially flat (from the early 1980s on, excluding the GR) or has

the opposite sign (for almost all of the 1970s). Thus, unlike classical methods, HNN finds a mild

positive contribution of tightening credit conditions from the mid 1980s until the early 1990s, an era

punctuated by the 1987 stock market crash and a general credit slowdown from 1989-1992 (Akhtar

et al., 1994). Additionally, HNN finds easy credit conditions from 1995 until 2005, with the excep-

tion of a small peak following the collapse of the Dotcom bubble. Overall, the credit conditions

index created by "inflation supervision" is suggestive of a much less persistent behavior and much

more action during the Great Moderation than what can be seen from the NFCI-Credit. Finally, the

24This cannot be assessed by looking at the coefficient since it is forced to be positive for identification purposes.
Rather, the statement comes from observing that HNN’s index is positively correlated with a known measure of credit
stress and that its ups and down are consistent with the kind of cyclical variation we expect from it.
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coefficient on credit index is found to be declining exogenously through time starting from 1980s

but then experience a revival in the 2010s. However, there is wide uncertainty surrounding the

coefficient estimates of the last decade.

Figure 12: HNN-F-4NK’s "credit conditions" and associated time-varying coefficient. Notes: Dashed line is the
beginning of the out-of-sample. NBER recessions are in pink shadowing. Gray shading is the 68% credible region.
NFCI indices prior to 1971 are patched using Stock and Watson (2002)’s EM algorithm applied on the whole FRED-
QD dataset. Coefficients for the last two specifications are obtained from time-varying parameter PC regressions (see
Figure 3 notes for details)) augmented with the Fed’s balance sheet each credit conditions index in turns .

From a methodological standpoint, the takeaway message is the following. If one chooses

the NFCI-Credit, arguably a very legitimate proxy for credit conditions as they enter Sims and

Wu (2019)’s PC, literally no empirical support is found for the new model. In contrast, HNN, by

constructing a credit index supervised by πt+1, finds some evidence for the PC as derived by Sims

and Wu (2019). This contribution of credit conditions – albeit light when compared to that of the

original four components – is nontrivial. The same cannot be said of the Fed’s reserves, which

have a limited direct effect on πt+1. But this could be due to the limited length of the "QE sample".

6.2 Adding an International Component and a Kitchen Sink

The connectedness of the world economy suggests inflation can be influenced by non-domestic

factors, like the vigor of the trading partners’ economy. There is cross-sectional and time series

evidence on the matter (Borio and Filardo, 2007; Laseen and Sanjani, 2016; Bobeica and Jarociński,

2019) and it is not infrequent to see proxies of international economic or inflation conditions enter

PC regressions (Blanchard et al., 2015). The 2021 inflation experience, with many countries report-

ing historically high YoY inflation rates simultaneously, does not negate the importance of a global

component either. As always, the question is how to properly construct a global measure of slack

that may or may not influence US inflation, when controlling for its own gap.

To create a global gap (excluding the US), I construct a hemisphere where the inputs are quar-

terly GDP growth rates from 1970 for OECD members and potential member states, which data
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Figure 13: Contributions (ht’s) from HNN-F-IKS. Notes: Dashed line is the beginning of the out-of-sample. NBER
recessions are in pink shadowing. Gray shading is the 68% credible region.

is available here. Country aggregations (like G7, to avoid overlap with domestic variables) are

excluded, and so are countries which data starts post-1960.25

Since this specification is not motivated from any tight theory (as it was the case in Section 6.1),

I also indulge in adding a Kitchen Sink hemisphere, which, as the name suggests, will include all

the variables in FRED-QD that are not already included in our four benchmark hemispheres. This

will provide yet another robustness check on the path estimated for key components like gt and

ESR
t . This can also point, via the VI analysis, to variables that could eventually deserve their own

hemispheres in extensions of this work. The resulting specification is referred to as HNN-F-IKS,

namely, HNN-F with an international component and a kitchen sink.

The international output gap seems to be of limited importance compared to other components

— its contribution is typically contained within the -0.5 to 0.5 range and the bands often times

includes 0. This statement, of course, does not apply to the Pandemic era where massive swings

similar to those of gt are observed. Notable recent episodes are a flash negative contribution circa

the GR and a gently negative one in the mid-2010s, corresponding to the missing inflation period.26

25Exceptions are made for China and India. China’s data is replaced with that available FRED that starts in the
mid-1990s (with residual seasonality filtered out with dummies) and the interpolated yearly series of the World Bank
is spliced in before that. OECD data is kept for India post-1996 and interpolated yearly data from the World Bank is
used prior to that. Transformations mentioned in section 2.1 are carried with the new data.

26Laseen and Sanjani (2016) also report on the informativeness of external factors for the 2008-2015 period in a
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In Figure 13, it is found that gt and ESR
t are qualitatively unchanged, but one can notice an

overall weakened effect (with respect to Figure 2) of both components especially in the 1970s. The

major reason for that last observation is arguably the commanding presence of the kitchen sink,

which contribution entertain some important highs in the 1970s, as well as three intriguing bumps

before the 1990, 2001, and 2008 recessions. Importantly, it is worth remembering that its very

inclusion changes the definition of gt and ESR
t are per the network structure. Thus, their reported

dampening should be taken with a grain of salt.

Figure 14: VI Results for the Kitchen Sink component of
HNN-F-IKS specification, with training ending in 2019Q4.
Mnemonics are those of FRED-QD.

Nonetheless, understanding what is in

the sink could clearly prove valuable. Fig-

ure 14, by reporting the VI for the sink com-

ponent, strongly suggests that information

about future economic outcomes is key: the

first six variables are all considered lead-

ing indicators. Very interestingly, it is,

again, the survey variant of such expecta-

tions that comes on top (UMCSENTx). Then,

comes market-based forward-looking vari-

ables: a US exchange rate followed by three

spreads (5-year treasury bill minus federal

fund rate (FFR), 3-month commercial pa-

per minus FFR, 3-month treasury bill mi-

nus FFR). The literature documenting the

potency of spreads as predictors of business cycle turning points is vast (Stock and Watson, 1989;

Estrella and Mishkin, 1998). Their link to inflation seems thinner (Stock and Watson, 2008) in lin-

ear PC regressions but Goulet Coulombe (2020a) finds that their link to inflation appears to be

highly nonlinear (using a newly developed random forest approach). HNN also can deal with the

necessary nonlinearities.

Finally, SPCS20RSA (S&P/Case-Shiller 20-City Composite Home Price Index) and ACOGNOx

(Manufacturers’ New Orders for Consumer Goods Industries) are both leading indicators within

their own economic sectors. Overall, there is a clear push from forward-looking variables during

the periods that precede economic downturns. This large weight accorded to variables inputting

information about future economic outcomes is not surprising, as the latter is directly related to

expectations about future marginal costs (and so are unit labor costs27, entering at positions 10 and

conditional BVAR exercise. However, results from HNN, which dispenses with many assumptions from BVAR and
related methods (but comes with some its own, in all fairness), points out this effect to be mild.

27In fact, in a well-known paper, Galı and Gertler (1999) showed that proxying for marginal costs directly with
the labor share gives a significant Phillips curve slope coefficient whereas using some form of output gap does not.
However, Mavroeidis et al. (2014) mostly overturn this result by noting few differences between the results of the two
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11 in Figure 14) – solving forward the NKPC yields that πt is a function of expected future marginal

costs.28 The empirical importance of considering forward-looking expectations about the marginal

costs has been highlighted before, mostly from a structural model perspective (Del Negro et al.,

2015). Nonetheless, it is worth remembering that VI results for the kitchen sink are more dispersed

than those of Figure 8 and it is clear that a plethora of regressors contribute to the component

beyond those at the top.

7 Parting Words

This paper estimates a neural Phillips Curve with a deep output gap by developing the Hemi-

sphere Neural Network. Results vary substantially from those obtained with traditional econo-

metric methods by dispensing with a plethora of assumptions inherent to the latter. Among others:

the choice of variable from which the gap should be made of, filter choices and laws of motions,

restrictive time variation in coefficients, etc. As a result, unlike time-varying PC regressions with

the CBO gap or others, HNNs delivers good forecasts, like capturing some of the upswing in the

CPI observed in 2021. The model attributes some of it to a widening positive output gap, un-

like traditional estimates which typically deliver negative (or mildly positive) gaps throughout

2021. Additionally, unlike methodologies which impose smoothness assumptions through autore-

gressive laws of motion, HNN’s gap is highly volatile during the Pandemic period – a finding

consistent with the intermittent closing/opening of the economy following the successive waves

of Coronavirus infections.

It is shown that the HNN framework can be extended in many directions. One is to test more

sophisticated Phillips Curve specifications by creating hemispheres for theoretical additions that

are not well defined in terms of actual variables. Another is to predict inflation volatility directly

within the same model without any significant alteration to the code or computations.

From a general econometric standpoint, this work calls into question the quasi-hegemony of

filtering methods when it comes to latent states extraction in macroeconomics. In fact, it ap-

pears that alternative routes leveraging larger databases, modern machine learning techniques,

and cutting-edge computing environments can contribute to economic debates in ways their pre-

decessors could not.

different specifications
28In unreported results, unit labor costs were included in the baseline HNN-F specification, which is a legitimate

enterprise in itself if we wish to extract mct directly rather than gt. The estimates of the gap (or mct) did not budge
but unit labor costs ranked highly in VI. This suggests that, while unit labor costs carry pertinent information, it was
already proxied for by a nonlinear combination of real activity variables already contained in Hg.
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A Appendix

A.1 Additional Figures

Figure 15: Contributions (ht’s) from HNN. Notes: Dashed line is the beginning of the out-of-sample. NBER reces-
sions are in pink shadowing.

Figure 16: Contributions (ht’s) from HNN-F with training ending in 2007. Notes: Dashed line is the beginning of the
out-of-sample. NBER recessions are in pink shadowing.
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Figure 17: HNN-F’s remaining two time-varying coefficients. Notes: Dashed line is the beginning of the out-of-
sample. NBER recessions are in pink shadowing. Grey shading is the 68% credible region.

Figure 18: Compared (standardized) measures of slack. Unemployment was multiplied by -1.

A.2 Ablation Studies

HNN involves many ingredients, like the use of many economic indicators and nonlinear super-

vised processing. In this section, I conduct a brief inspection of what happens when dispensing

with one or the other.
Table 2: Data-Poor H’s

H Content

ELR
t t (exogenous time trend)

ESR
t Inflation expectations from SPF, and Michigan Survey, lags of

πt, t
gt Unemployment, t
ct Oil price, t

First, I consider a specification where key hemispheres only contains what would enter in typ-
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ical modern PC OLS-based regression, as detailed in Table 2. Essentially, more fine-grained data

on prices and any real activity indicator except for unemployment have been liquidated (with re-

spect to Table 1). Unemployment is now in levels and aforementioned transformations (lags and

moving averages) are kept. The idea is to have the neural network filter unemployment itself by

nonlinearly interacting it with t, analogously to what unsupervised filtering does. In this context,

for identification reasons (detrending unemployment and estimating a trending coefficient on it),

HNN (not HNN-F) results are reported in Figure 19 and the focus is kept on contributions.

Here are key observations from Figure 19. The contribution of real activity is much smaller in

absolute terms throughout the sample than it it is for baseline specifications, highlighting the im-

portance of diversified real activity indicators. The bands include 0 much more often starting from

the 2000s, in line with traditional results using filtered unemployment. Speaking of, the extracted

ht,g looks much more like filtered unemployment, albeit smaller λ (Hodrick-Prescott smoothing

parameter) than what is typically used. Lastly, and rather not unexpectedly, ht,g is negative all

Pandemic long (as of 2021Q3) making it rather unequipped to force its inflation forecast upward

during the last 3 quarters. All in all, the inclusion of many real indicators in Hg seems vital for

a more proactive characterization of real activity. This is not an unfamiliar conclusion (Stock and

Watson, 2002).

Figure 19: A Look at HNN components (ht’s) with limited data in hemispheres. Notes: Dashed line is the beginning
of the out-of-sample. NBER recessions are in pink shadowing.

The expectations component is more alike what reported throughout the paper (e.g., Figures 2

and 15). This is not surprising given the high importance accorded to survey expectations and lags
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of the CPI by HNN, as reported by VI calculations in Figure 8b. However, in 19 their nonlinear

processing is even more evident: the component is drastically shut down starting from 1990, and

only wakes up for one obvious spike during the Great Recession. The contribution, however,

excludes the 2021Q2 very noticeable peak, which makes the forecast takes off (Figure 4b) from the

historical mean. Thus, dispensing with the vast number of price series originally included in HNN

leads to missing key abrupt changes in the short-run expectations component that go under the

radar of traditional aggregated measures.

The second ablation study exercise maintain the data-rich environment, but dispense with non-

linearities and supervision (in part). Figure 20 conducts different PCA-based extractions of the data

contained in Hg and HESR . A few alternatives are reported. PCA Real Activity means reporting

the first factor of Hg. Weighted PCA Real Activity means that, after standardization, variables

were given weights in accord to VI estimates from Figure 8. This brings back some of the supervi-

sion from HNN. The real activity part of Figure 20 contains two additional extractions. PCA All is

the first factor of all the contemporaneous data included in HNN, whereas PCA All+ includes lags

and MARX’s as well. The rationale for including the last two (in the top part of the panel only)

stems from the often reported finding that the first factor extracted from broad macroeconomic

panels looks very much like a real activity factor (McCracken and Ng, 2020).

Findings are as follows. In Figure 20a, PCA extractions, except for the weighted version, form a

cluster throughout. For the period spanning from 2000 to the Pandemic era, that cluster seemingly

includes gHNN
t . However, during periods of overheating, differences are manifest and no linear

method seem to approximate gHNN
t . This is true of the 1970s, and also of the current period (Figure

20b)), with two linear extractions signaling no overheating at all, and two others showing a rather

quaint or short-lived one. Weighted PCA Real Activity is mostly far away gHNN
t from the pack,

suggesting nonlinear processing of important variables (such as the Help-Wanted Index, which

trend is clearly visible in Weighted PCA Real Activity) cannot be dispensed with. Nevertheless,

this "mildly supervised" PCA extraction is the only one pointing to a widening positive gap in 2021

– as does gHNN
t .

Differences between PCA extracts and HNN-F’s own ESR are very apparent in Figure 20c. For

instance, HNN-F’s ESR essentially consists in being resting around 0 or having important positive

peaks – i.e., there is no important downward pressure from expectations as suggested by either

PCA or its weighted version (for instance 2008, or after the 2nd 1980s recession). Obviously, the

non-symmetrical behavior of ESR is possible due to nonlinear processing through the network.

This behavior is also noticeable in Figure 20d, with PCA and the mildly supervised PCA mostly

being indicators of current inflation, whereas ESR does not dip following the flash recession (like

prices themselves), but exhibit an abrupt peak a few quarters later. Thus, nonparametric nonlinear

processing seems to be vital in extracting ESR from price and expectations data that is actually
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(a) Alternative Data-Rich gt Extraction (b) Alternative Data-Rich gt Extraction – Last 3 years

(c) Alternative Data-Rich ESR
t Extraction (d) Alternative Data-Rich ESR

t Extraction – Last 3 years
Figure 20: "Gaps" of the four H’s through time according to different extraction techniques. Notes: all NN estima-
tions end in 2019 and are projected out-of-sample from there. Pink shading is NBER recessions.

forward-looking.

Overall, results from the Ablation studies suggest that both using vast amounts of data and

nonlinear supervised processing of it are essential to obtain the desirable gt and ESR delivered by

HNN-F.

A.3 Taylor Rule Supervision

This section explores a curiosity which can be understood as a more radical change of supervisors

than what reported in Section 4.3. From an econometric point of view, it showcases yet one of the

many potential applications of HNN beyond inflation and Phillips curves.

Inflation is retired in favor of the federal funds rate and the supervision relationship becomes

an empirical Taylor rule. That is, we are extracting the contribution of the gap and inflation to

the monetary policy instrument values. An interesting economic question is whether hFFR
t,g looks

remotely like hCPI
t,g . In other words, does the "fed view" of the gap – assuming the Taylor rule is a

valid approximation to its behavior – coincides with what the inflation record suggests?

There are two important changes with respect to the baseline specification. First, πt+1 is re-

placed by the federal fund rate next period (rt+1). Second, the energy/commodities group is re-
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placed by the "Smoothing" group which includes lags of rt+1. This inclusion is typical of empirical

Taylor rules and statistically accommodates for the fact that the monetary authority avoids drastic

changes in rt.

Figure 21: Contributions (ht’s) based on a Taylor Rule, with training ending in 2019. Notes: Dashed line is the
beginning of the out-of-sample. NBER recessions are in pink shadowing.

In Figure 21, hFFR
t,g looks much more like what one would obtain from traditional filtering-based

gap except for the Pandemic episode. First, there is a certain persistence to it that is characteristic of

specification assuming autoregressive laws of motion. Second, albeit remaining cyclical, the con-

tribution is mostly negative starting from the 2000s, whereas it was roughly symmetrical around

0 beforehand – which is reminiscent of many unemployment-related measures of slack (Stock and

Watson, 2019). Third, it mostly exhibits a slow climb back to 0 starting from 2008, like one would

obtain from, e.g., the CBO gap.

There are 3 episodes where predictions (unreported) from this model can be off for a few quar-

ters. First, the two ZLB episodes, where this Taylor rule prescribes interest rates going below

zero—not inconsistent with the deployment of quantitative easing following the GR and during

the Pandemic period. Interestingly, the third episode is right now, with hFFR
t,g asking for much

higher rates than those currently in effect. In other words, if the Fed was consistent with how it

responded to slack/overheating (as extracted by HNN-F) during the last decades, rates should be

higher than they are right now. Two grains of salt on this statement are that (i) the Fed changed its

approach to inflation targeting in 2020, and (ii) Pandemic era slack is different from previous re-

cessions slack (like the distributive aspects of it) and addressing it more upfront will have different
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(likely higher) costs on other dimensions of economic well-being. A formalization of this view is

that, in times of sectoral (or structural) reallocation, the divine coincidence is broken, leading to an

"optimal" level of inflation that is above the target (Guerrieri et al., 2021). However, an important

drawback of deviating from the HNN-based Taylor Rule is the risk of disanchoring expectations—

which for now appears mild since economic agents can allegedly differentiate between what one

should expect from normal and Pandemic economic times.

The evident wedge between hFFR
t,g and hCPI

t,g reported throughout the paper hints that there may

be a gap between the monetary authority’s view of economic slack and what matches the inflation

record. Nonetheless, this application is meant as illustrative about HNN versatility, and to under-

stand further how supervision affect gt. A comprehensive assessment of "neural Taylor rules" is

material for future work.

A.4 Mnemonics for Benchmark HNNs

#These are for HNN-F. Add "trend" to the first three hemispheres to get HNN.

real.activity.hemisphere <- c("PAYEMS","USPRIV","MANEMP","SRVPRD",

"USGOOD" ,"DMANEMP","NDMANEMP","USCONS","USEHS",

"USFIRE","USINFO","USPBS","USLAH","USSERV",

"USMINE","USTPU","USGOVT","USTRADE",

"USWTRADE","CES9091000001","CES9092000001",

"CES9093000001","CE16OV","CIVPART",

"UNRATE","UNRATESTx","UNRATELTx","LNS14000012",

"LNS14000025","LNS14000026",

"UEMPLT5","UEMP5TO14","UEMP15T26","UEMP27OV",

"LNS13023621","LNS13023557",

"LNS13023705","LNS13023569","LNS12032194",

"HOABS","HOAMS","HOANBS","AWHMAN",

"AWHNONAG","AWOTMAN","HWIx","UEMPMEAN",

"CES0600000007", "HWIURATIOx","CLAIMSx","GDPC1",

"PCECC96","GPDIC1","OUTNFB","OUTBS","OUTMS",

"INDPRO","IPFINAL","IPCONGD","IPMAT","IPDMAT",

"IPNMAT","IPDCONGD","IPB51110SQ","IPNCONGD",

"IPBUSEQ","IPB51220SQ","TCU","CUMFNS",

"IPMANSICS","IPB51222S","IPFUELS")

SR.expec.hemisphere <- c("Y", "PCECTPI","PCEPILFE",

"GDPCTPI","GPDICTPI","IPDBS", "CPILFESL","CPIAPPSL",
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"CPITRNSL","CPIMEDSL","CUSR0000SAC","CUSR0000SAD",

"WPSFD49207", "PPIACO","WPSFD49502","WPSFD4111",

"PPIIDC","WPSID61","WPSID62","CUSR0000SAS","CPIULFSL",

"CUSR0000SA0L2","CUSR0000SA0L5", "CUSR0000SEHC",

"spf_cpih1","spf_cpi_currentYrs","inf_mich")

commodities.hemisphere <- c("WPU0531","WPU0561","OILPRICEx","PPICMM")

LR.expec.hemisphere <- c("trend")

credit.hemisphere <- c("BUSLOANSx","CONSUMERx","NONREVSLx",

"REALLNx","REVOLSLx","TOTALSLx","DRIWCIL", "DTCOLNVHFNM",

"DTCTHFNM","INVEST","nfci","nfci_credit","nfci_nonfin")
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