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Abstract

I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine

Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main

output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many

popular nonlinearities (threshold/switching, smooth transition, structural breaks/change)

and allowing for sophisticated new ones. The approach delivers clear forecasting gains over

numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well

for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs.

For instance, the successful unemployment forecast is due to the influence of forward-looking

variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interest-

ingly, the Phillips curve has indeed flattened, and its might is highly cyclical.
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1 Introduction

The rise of Machine Learning (ML) led to great excitement in the econometrics community. In

applied macroeconomics, a first wave of papers took ML algorithms off the shelf and went hunt-

ing for forecasting gains. With the emerging consensus that some ML offerings can appreciably

increase predictive accuracy, a question emerges: what is the place of economics in all that?

The conditional mean is the most basic input to any empirical macroeconomic analysis. Any-

thing else that follows (e.g., structural analysis) depends on it. Thus, getting it right is not merely

useful, it is necessary. Clearly, in that regard, ML can help. However, while the latter gladly de-

livers prediction accuracy gains (and ergo a conditional mean closer to the truth), it is much

more reluctant to disclose its inherent model. Consequently, ML is currently of great use to

macroeconomic forecasting, but of little help to macroeconomics. I propose a simple remedy:

shifting the focus of the algorithmic arsenal away from predicting yt into modeling βt, which

are economically meaningful coefficients in a time-varying macroeconomic equation. The newly

proposed algorithm, Macroeconomic Random Forest (MRF) kills two coveted birds with one stone.

First, in most instances, MRF forecasts better than off-the-shelf ML algorithms and traditional

econometric approaches. Second, its main output, Generalized Time-Varying Parameters (GTVPs),

can be interpreted. Their versatility comes from nesting many popular specifications (structural

breaks/change, threshold effects, regime-switching, etc.) and letting the data decide whichever

combination of them is most suitable. Ultimately, we get a new methodology leveraging the

power of ML and big data to provide a modern take on the decades-old challenge of estimating

latent states driving linear macroeconomic equations.

THE STATE OF EMPIRICAL MACRO AFFAIRS. Answering positively two questions guaran-

tees a viable conditional mean: "are all the relevant variables included in the model?" and at a

higher level of sophistication, "is linearity a valid approximation of reality?". The first one led to

the successful development of factor models and large Bayesian Vector Autoregressions (VARs)

over the last two decades. To address the second, applied macroeconomic researchers have pro-

posed many non-linear time series models based on reasonable economic intuition. Most of

them amount to have regression coefficients βt in

yt = Xtβt + εt

evolving through time. The βt process can take many forms, and a choice must be made a

priori out of many equally plausible alternatives. Notable members of the vast time-variations

catalog are threshold/switching regressions (Hansen, 2011), smooth transition (Teräsvirta, 1994),

structural breaks (Perron et al., 2006; Stock, 1994), and random walk time-varying parameters

(Sims, 1993; Cogley and Sargent, 2001; Primiceri, 2005). While it is uncontroversial that factor
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models and large Bayesian VARs have gone a long way in meeting their original goals, less

victorious statements are available for the various time-variation proposals. Why?

More often than not, nonlinear time series models use little data and/or restrict stringently

the shape of βt’s path. While the consequences for forecasting are direct and obvious, those for

analysis of macroeconomic relationships are equally problematic. Is the evolving Taylor rule

characterized by switching regimes (Sims and Zha, 2006), a Volker structural break (Clarida

et al., 2000), or gradually evolving parameters (Boivin, 2005; Primiceri, 2005)? This discordance

interferes with our understanding of the past while impacting our expectations for tomorrow’s

βt. I now divide popular time-variation approaches into two strands, discuss their shortcomings,

and complete by explaining how MRF addresses them.

OBSERVABLE TIME-VARIATION VIA INTERACTION TERMS. Using interaction terms and re-

lated refinements is a parsimonious way to create time variation in a linear equation. For in-

stance, switching regimes based on an observed regressor can be obtained by interacting the

linear equation with the indicator function I(qt > c), where c is some value, and qt is a threshold

variable chosen by the researcher. However, using the FRED-QD US macro data set (McCracken

and Ng, 2016) reveals an overwhelmingly large number of candidates for qt. Additionally, there

may be multiple regimes interacting together. Or the "true" qt could be an unknown function of

available regressors. And structural breaks or slow exogenous variation could get in the way.

The list goes on. This renders a credible exploration of the threshold structures’ space impossible

and the enterprise of manually specifying the model very much compromised.

Here is an empirical example. Auerbach and Gorodnichenko (2012b) and Ramey and Zubairy

(2018) use a GDP/unemployment indicator to let the effects of fiscal stimulus (potentially) vary

with the state of the economy. Batini et al. (2012) allow for additional dependence on the origin

of the impulse (revenue or spending). Such honorable explorations could go on endlessly. MRF

provides a hammer solution to the problem. First, the near-universe of threshold structures

can be characterized by regression trees — see section 2.1. Second, MRF embeds, among other

things, a powerful greedy algorithm designed to explore such "structure" spaces.

LATENT TIME-VARIATION. Some methods with an aura of greater flexibility are labeled as

"latent change". In this line of work, βt either follows a law of motion (random walk, Markov

process) or could be subject to discrete breaks.1 At first glance, this appears to solve many of

the problems of interaction terms approaches. By treating βt as a state to be filtered/estimated

within the model, the complexity of characterizing its path correctly out of abundant data seems

to vanish. Alas, estimating βt’s path implies a great number of parameters (in fact, often greater

than the number of observations, Goulet Coulombe 2020a) which inevitably necessitates strong

1Simpler derivatives are often used in applied work. In forecasting, rolling-window estimation drops early
observations. In empirical macro, pre-defined subsamples are popular (Clarida et al., 2000; Del Negro et al., 2020).

2



regularization. That regularization is the law of motion itself, a choice far from innocuous –

and akin to that of qt in "observable" change models. Accordingly, whether it is latent regime-

switching, exogenous breaks, or slow change, none can easily accommodate for the additional

presence of the other. Yet, these models are routinely fitted separately on the same data. Conse-

quently, methods often detect what they are designed to detect, in near-complete abstraction of

imaginable interference from other nonlinearities.

Additionally, while "latent" approaches may sometimes rationalize the data well in-sample,

many of them will struggle to outperform a simple benchmark out-of-sample. Often, the very

nature of βt’s law of motion creates forecasting headaches. Classical TVPs imply a two-sided vs

one-sided filtering problem. Analogously, detecting a structural break is much harder without

a great amount of data on both sides of it. Moreover, there is the obvious problem of statistical

efficiency. If the Phillips curve flattened because an economy became increasingly open, includ-

ing an interaction term with imports/exports is wildly more efficient than obtaining the whole

βt path non-parametrically. Thus, exogenous structural change should be, in some sense, a time

variation of last resort. The advantage of MRF is that it algorithmically search for "observable"

low-hanging fruits, and turn to split the sample with t only if necessary. Further, it implicitly

creates a forecasting function for βt which is an RF in its own right. This is, almost in any case,

much more powerful than existing alternatives – like random walks.

MECHANICS. The key difference when adding the M to MRF is the inclusion of a linear part

within each of the tree leaves, rather than just an intercept. Motivated in cross-sectional appli-

cations to improve the efficiency of nonparametric estimation (in the spirit of local linear regres-

sion), trees with linear parts have been considered (among others) in Alexander and Grimshaw

(1996) and Wang and Witten (1996). Friedberg et al. (2018) expand on this by considering an

ensemble of them (i.e., a forest) and focusing on the problem of treatment effect heterogeneity.

Of course, the difference here is that a linear part is much more meaningful when one can look

at βt as a process of its own – and as a synthesis of nonlinear time series models. Finally, it

is noteworthy that the approach may come in semiparametric partially linear clothing, yet it

makes no compromise on the range of nonlinearities it captures. This is a virtue of time-varying

coefficients models being able to approximate any nonlinear function (Granger, 2008).

The paper also introduces new devices enhancing MRF’s predictive and interpretability po-

tential. First, I propose Moving Average Factors (MAFs) as a simple way to compress ex-ante

the information contained in the lags of a regressor entering the RF part of MRF. They boost the

meaningfulness of tree splits and helps avoid running out of them quickly. The transformation

is motivated by the literature on constraining/regularizing lag polynomials (Shiller, 1973). Pre-

cisely, MAFs’ contribution is to induce similar shrinkage when there are no explicit coefficients

to shrink. When it comes to GTVPs themselves, I provide a regularization scheme better suited
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for time series which procures a desirably smoother path with respect to time. It is inspired

by the random walk shrinkage of the classical TVP literature and is implemented within the

tree procedure by weighted least-squares. Finally, a variant of the Bayesian Bootstrap provides

credible regions that are instrumental for the interpretation of GTVPs.

RESULTS. In simulations, the tool does comparably well to traditional nonlinear time series

models when the data generating process (DGP) matches what the latter is designed for. When

the time-variation structure becomes out of reach for classical approaches, MRF wins. Addition-

ally, it supplants plain RF whenever persistence is pervasive. In a forecasting application, the

MRFs gains are present for almost all variables and horizons under study, a rarity for nonlinear

forecasting approaches. For instance, the Autoregressive Random Forest (ARRF) almost always

supplant its resilient OLS counterpart. Also, an MRF where the linear part is a compact factor-

augmented autoregression generates very accurate forecasts of the 2008 downturn for both GDP

and the unemployment rate (UR). Inspection of resulting GTVPs reveals they behave differently

from random walk TVPs. For instance, in the UR equation, the contribution of forward-looking

variables nearly doubles before every recession — including 2008 where the associated βt is

forecasted to do so out-of-sample. This reinforces the view that financial indicators and other

market-based expectations proxies can rapidly capture downside risks around business cycle

turning points (Adrian et al., 2019). MRF learned and applied it to great success.

Inflation is subject to a variety of time-variations, detection of which would be compromised

by approaches lacking the generality of MRF. The long-run mean and the persistence evolved

slowly and in an exogenous fashion — this has been repeatedly found in the literature (e.g., Cog-

ley and Sargent 2001). More novel is the finding that the real activity factor’s effect on the price

level depends positively on the strength of well-known leading indicators, especially housing-

related. Following this lead, I complete the analysis by looking at a traditional Phillips’ curve

specification. I report that the inflation/unemployment trade-off coefficient decreased signifi-

cantly since the 1980s and also varies strongly along the business cycle. Among other things,

it is extremely weak following every recession. This nuances current evidence on the flatten-

ing Phillips curve, which, by design, focused almost entirely on long-run exogenous change

(Blanchard et al., 2015; Galí and Gambetti, 2019; Del Negro et al., 2020). Overall, MRF suggests

inflation can rise from a positive unemployment gap, but it goes down much more timidly from

economic slack. These findings are made possible by combining different tools within the new

framework, such as credible intervals for the GTVPs, new variable importance measures specif-

ically designed for MRF, and surrogate trees as interpretative devices for βt.

OUTLINE. Section 2 introduces MRF, motivates its use, considers practical aspects, and discusses

relationships with available alternatives. Sections 3 and 4 report simulations and forecasting

results, respectively. Section 5 analyzes various GTVPs of interest. Section 6 concludes.
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2 Macroeconomic Random Forests

This section introduces MRF. I first motivate the use of trees as basis functions by casting stan-

dard switching structures for autoregressions as special cases. Second, I detail the MRF mechan-

ics and how it yields GTVPs. Third, I discuss how the approach relates to both standard RF and

traditional random walk TVPs. Fourth, I discuss interpretability potential and provide a way to

assess parameter uncertainty.

2.1 Traditional Macro Non-Linearities as Trees

Within the modern ML canon, Random Forest (RF) is an extremely popular algorithm because

it allows for complex nonlinearities, handles high-dimensional data, bypasses overfitting, and

requires little to no tuning. This is in sharp contrast with, for example, Neural Networks, whose

ability to fail upon a bad choice of hyperparameters is largely unmatched. Thus, RF is a reason-

able device to look into for constructing GTVPs. But there is more: many common time series

nonlinearities fit within a tree structure. Hence, it will be all the more natural to think of MRF as

a generalization of previous nonlinear offerings. Overall, it eliminates the arbitrary search for a

specification. By creating a unified view, the myriad of time-variations suggested separately can

now be tackled jointly.

I now present two examples displaying how common time series nonlinearities imply a tree

structure for an AR process. Let us consider the inflation process in a country where inflation

targeting (IT) was implemented at a publicly known date (like in Canada). Let πt be inflation at

time t and t∗ is the onset date of IT. Additionally, gt is some measure of output gap. A plausible

model is reported in the tree graph below. The story is straightforward. Inflation behaved dif-

ferently before vs after IT. After IT, it is a simple AR process. Before IT, it was a switching AR

process which dynamics and mean depended on the sign of the output gap.2

Full Sample

t < t∗

gt−1 < 0

πt = c1 + φ1πt−1 + ǫt

gt−1 ≥ 0

πt = c2 + φ2πt−1 + ǫt

t ≥ t∗

πt = c3 + φ3πt−1 + ǫt

2Note that a standard regression tree would set all φ’s to 0.
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This is one story out of many that trees can characterize. In practice, none of the above is

known. The structure, the splitting variables, and the splitting points could be different. This

is both good and bad news. It highlights the flexibility of trees. It also suggests that designing

the "true" one from economic deduction is a daunting task — equally plausible alternatives are

easily imaginable. Fortunately, algorithms can point out which trees in better agreement with

the data.

A global grid search is computationally unfeasible if either St is large or if we want to consider

more than a few splits (examples above included 2 and 3, respectively). A natural way forward

is recursive partitioning of the data set via a greedy algorithm (Breiman et al., 1984).3 A greedy

algorithm optimizes functions by iteratively doing the best local update, rather than directly

solving for a global optimum. As a result, it is prone to high variance (Friedman et al., 2001).

Hence, considering a diversified portfolio of trees appears as the most sensible route. To achieve

that, it is highly effective to use Bootstrap Aggregation (Bagging, Breiman 1996) of many de-

correlated trees. This is the famous Random Forest proposition of Breiman (2001).

2.2 Generalized Time-Varying Parameters

The general model is

yt = Xtβt + ǫt

βt = F (St)

where St are the state variables governing time variation and F a forest. St is oberved macroeco-

nomic data which composition is motivated in section 2.6 and laid out explicitly in section 4. X

determines the linear model that we want to be time-varying. Typically, Xt ⊂ St is rather small

(and focused) compared to St. For instance, an autoregressive random forests (ARRF) – which

generalizes the cases of the previous section – uses lags of yt for Xt. The tree fitting procedure

underlying plain RF is not adequate, as it sets Xt = 1 by default. Thus, analogously to Friedberg

et al. (2018), it is modified to

min
j∈J −, c∈IR

[

min
β1

∑
{t∈l|Sj,t≤c}

(yt − Xtβ1)
2 + λ‖β1‖2

+min
β2

∑
{t∈l|Sj,t>c}

(yt − Xtβ2)
2 + λ‖β2‖2

]

.

(1)

3A single autoregressive tree was proposed in Meek et al. (2002).
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The purpose of this problem is to find the optimal variable Sj (so, finding the best j out of the

random subset of predictors indexes J −) to split the sample with, and at which value c of that

variable should we split.4 It outputs j∗ and c∗ which are used to split l (the parent node) into

two children nodes, l1 and l2. We start with the leaf l being the full sample. Then, we perform a

split according to the minimization problem, which procures us with 2 subsamples. Within each

of these two newly created subsamples, we run (1) again. Repeating this process recursively

constructs an ever-growing set of l’s which are of ever-shrinking size. Doing so until a stopping

criteria is met generates a tree.

LET THE TREES RUN DEEP. Recursively splitting β0 into β1 and β2 eventually leads to βt.

However, βt, by construction, has very little company within its terminal node/leaf. As result,

a single tree has low bias, but also very high variance for βt. When fitting a single tree, the

(early) stopping point must be tuned to avoid overfitting. However, this is not necessary when

a sufficiently diversified ensemble of trees is considered. Originally, Breiman (2001) himself pro-

vided a bound on the generalization error that grows with the correlation between trees.5 In

Goulet Coulombe (2020b), I go further by showing that RF’s out-of-sample prediction is equiva-

lent to the optimally "stopped" or "pruned" one, provided sufficiently diversified trees. The de-

sirable property is attributed to the peculiar behavior of "randomized greedy algorithms", which

are often overlooked as mere computational necessities. Those insights are of even greater use

when it comes to time series since dependence and structural change pose challenges to hyper-

parameter tuning. Given a large enough B, a reasonable mtry (see "De-Correlation" below on

this) and standard subsampling rate, we can be confident that the out-of-bag prediction and βt’s

exclude fitted noise. In our specific context, it means the sample will not be over-split, and we

are not going to see time variation when it is not there. Naturally, the credible regions proposed

in section 2.7 will also help in that regard. The property will be illustrated in section 3.2.

(M)RF prediction is the simple average from those of its single trees. Same goes for βt. RF

is a clever diversification scheme which generates sufficient randomization for that average to

inherit the above properties. To achieve that, it mixes elements of re-sampling and model aver-

aging: Bagging and de-correlated trees.6

BAGGING. Each tree is "grown" on a bootstrapped sample (or a random subsample) (Breiman,

1996).7 When the base learner is highly nonlinear in observation and/or unstable, gains from

4Note that, unlike Friedberg et al. (2018), St and Xt will differ, which is natural when motivated from a TVP
perspective (but not so much from local linear regression one). Forcing their equivalence is not feasible nor desirable
in a macro environment.

5Also, Duroux and Scornet (2016) derive a formula (for a "median" forest) linking tuning parameters related to
the depth of the trees and that of diversification.

6See Goulet Coulombe (2020b) for a discussion on how RF compares and contrast with the forecast combination-
s/averaging literature.

7This does not preclude from obtaining βt for all t’s since βt’s attached to the excluded observations are simply
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Bagging can be large (Breiman, 1996; Grandvalet, 2004). Nonparametric (or "pairs" MacKinnon

2006) bootstrap is being used — i.e., we are not shuffling residuals.8 Rather, we are randomly

selecting many observations triples [yt Xt St] (or pairs [yt St] for Plain RF), and then fit a tree

on them. To deal with the dependence inherent to time series data and other reasons detailed

in section 2.7, a slightly more sophisticated bootstrapping/subsampling procedure (involving

blocks) will be used for MRF.

DE-CORRELATION. The second ingredient, proposed in Breiman (2001), is to consider "de-

correlated" trees. RF is an average of many trees, and any averaging scheme reduces variance at

a much faster rate if its components are uncorrelated. In our context, this is obtained by growing

trees semi-stochastically. In equation (1), this is made operational by using J − ⊂ J rather than

J . In words, this means that at each step of the recursion, a different subsample of regressors

is drawn to constitute candidates for the split. This prevents the greedy algorithm (which, as

we know, only "thinks" locally) to always embark on the same optimization route. As a result,

trees are further diversified and computing time, reduced. The fraction of randomly selected

predictors is a tuning parameter typically referred to as mtry in the literature (and all software),

with a default value of 1
3 for regression settings. This, other algorithmic parameter settings, and

some practical aspects are discussed in appendix A.4.

Plain RF has many qualities readily transferable to MRF. It is easy to implement and to tune.

That is, it has few tuning parameters that are usually of little importance to the overall perfor-

mance – robustness. It is relatively immune to the adverse effects of including many irrelevant

features (Friedman et al., 2001). Given the standard ratio of regressors to observations in macro

data, this is a non-negligible advantage. Furthermore, with a sufficiently high mtry, it can adapt

nicely to sparsity and discard useless predictors (Olson and Wyner, 2018). Finally, its vanilla

version already shows good forecasting performance for US inflation (Medeiros et al., 2019) and

macro data in general (Chen et al., 2019; Goulet Coulombe et al., 2019).

2.3 Random Walk Regularization

Equation (1) uses Ridge shrinkage which implies that each time-varying coefficient is implicitly

shrunk to 0 at every point in time. λ and the prior it entails can exert a significant influence.

For instance, if a process is highly persistent (AR coefficient lower than 1 but nevertheless quite

high) as it is the case for SPREAD (see section 4), shrinking the first lag heavily to 0 could incur

serious bias. Fortunately, this can easily be refined to a Minnesota-style prior if Xt corresponds

generated by applying the tree on the "out-of-bag" data.
8Nonetheless, Bagging in itself is not estranged to macro forecasting (Inoue and Kilian, 2008; Hillebrand and

Medeiros, 2010; Hillebrand et al., 2020). However, nearly all studies consider the more common problem of variable
selection via hard-thresholding rules – like t-tests (Lee et al., 2020).
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to a Bayesian VAR equation. If Xt is low-dimensional (as it will often be), a simpler alternative

consists in using OLS coefficients as prior means. Nonetheless, the specification of previous

sections implies that if λ grows large, ∀t βt = 0 (or whatever the prior mean is). βi = 0 is a

natural stochastic constraint in a cross-sectional setting, but its time series translation βt = 0 can

easily be suboptimal. The traditional regularization employed in macro is rather the random

walk

βt = βt−1 + ut.

Thus, it is desirable to transform (1) so that it implements the prior that coefficients evolve

smoothly (at least, to minimal extent), which is just shrinking βt to be in the neighborhood of

βt−1 and βt+1 rather than 0. This is in line with the view that economic states (as expressed by βt

here) last for at least a few consecutive periods. Note that unlike traditional TVP methods which

rely extensively on smoothness regularization – as it is the sole regularizer, MRF makes only an

very mild use of it to get rid of high-frequency noise that may be left in βt. The main benefit is

to facilitate the interpretation of resulting GTVPs.

I implement the desired regularization by taking the "rolling-window view" of time-varying

parameters, which has been exploited recently to estimate large TVP-VARs (Giraitis et al., 2018;

Petrova, 2019). That is, the tree, instead of solving a plethora of small ridge problems, will rather

solve many weighted least squares problems (WLS) which includes close-by observations. The

latter are in the neighborhood (in time) of observations within current leaf. They are included in

estimation, but are allocated a smaller weight.

For simplicity and to keep computational demand low, the kernel used by WLS is rather

rudimentary: it is a symmetric 5-step Olympic podium. Informally, the kernel puts a weight of

1 on observation t, a weight of ζ < 1 for observations t − 1 and t + 1 and a weight of ζ2 for

observations t − 2 and t + 2. Since some specific t’s will come up many times (for instance, if

both observations t and t + 1 are within the same leaf, podiums overlap), I take the maximal

weight allocated to t as the final weight w(t; ζ).

Formally, define l−1 as the "lagged" version of leaf l. In other words, l−1 is a set containing

each observation from l, with all of them lagged one step. l+1 is the "forwarded" version. l−2

and l+2 are two-steps equivalents. For a given candidate subsample l, the podium is

w(t; ζ) =































1, if t ∈ l

ζ, if t ∈ (l+1 ∪ l−1)/l

ζ2, if t ∈ (l+2 ∪ l−2)/ (l ∪ (l+1 ∪ l−1))

0, otherwise

where ζ < 1, a tuning parameter guiding the level of time-smoothing. Then, it is only a matter of
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how to include those additional (but down weighted) observations in the tree search procedure.

The usual candidate splitting sets

l1(j, c) ≡ {t ∈ l|Sj,t ≤ c} and l2(j, c) ≡ {t ∈ l|Sj,t > c}

are expanded to include all observations of relevance to the podium

for i = 1, 2 : lRW
i (j, c) ≡ li(j, c) ∪ li(j, c)−1 ∪ li(j, c)+1 ∪ li(j, c)−2 ∪ li(j, c)+2.

The splitting rule becomes

min
j∈J −, c∈IR

[

min
β1

∑
t∈lRW

1 (j,c)

w(t; ζ) (yt − Xtβ1)
2 + λ‖β1‖2

+min
β2

∑
t∈lRW

2 (j,c)

w(t; ζ) (yt − Xtβ2)
2 + λ‖β2‖2

]

.

(2)

Note that the Ridge penalty is kept in anyway, so the final model has in fact two sources of

regularization. With ζ → 0, we are heading back to pure Ridge.

Although not considered in the main applications of this paper, models with a larger linear

part Xt are possible. For instance, one could estimate, equation by equation, a high-dimensional

VAR. In practice, this simply requires harsher regularization via higher values of λ, ζ and a

larger minimum leaf size. Nevertheless, the forecasting benefits from this strategy could prove

limited: MRF is "high-dimensional" whenever St is large. The time-varying constant in MRF is

a RF in its own right. It can be seen as a complex misspecification function (in the deep learning

jargon, it is effectively called the bias) that adaptively controls for omitted variables in a way

that is both non-linear and strongly regularized via randomization. Consequently, the cost from

omitting a regressor of minor importance in Xt is low since it can be picked up by the time-

varying intercept.

Of course, the small Xt strategy treats the extra regressors as exogenous, which could be

at odds with some researchers’ will to investigate a large web of impulse response functions.

Anyhow, both approaches are possible. The dynamic coefficients of a (large) GTVP-VARs can

be estimated by either fitting MRF equation by equation, or modifying the splitting rule in (2) to

be multivariate so that each tree is fitted jointly for all equation – pooling time-variation across

equations. Finally, elements of the covariance matrix of residuals can be fitted separately with a

plain RF, which is very fast.
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2.4 Relationship to Random Walk Time-Varying Parameters

GTVPs have many advantages over classical TVPs. While it is known that any nonlinear model

can be approximated by a linear one with TVPs (Granger, 2008), nothing is said about how

efficient that estimation is going to be. As it turns out, efficiency crucially matters in a macro

context, and random-walk TVPs can be quite inefficient (Aruoba et al., 2017). For example, if the

true βt follows a recurrent switching mechanism, random walk parameters already have two

strikes against them. Some dimensionality reduction techniques – like reduced-rank restrictions

(de Wind and Gambetti, 2014; Stevanovic, 2016; Chan et al., 2018; Goulet Coulombe, 2020a) –

can help, but nothing in that paradigm can come close to the parsimony of simply interacting Xt

with relevant variables. In contrast, MRF considers all time-variations options, and choose the

"obvious thing", which may or may not be splitting on t. Also, it is absolutely possible that the

resulting F pools both latent and observable time variation.

Even though MRF is remarkably flexible, its variance remains low thanks to the diversi-

fied portfolio of trees. The variance of classical TVPs can be controlled by cross-validation

(Goulet Coulombe, 2020a) or via an elaborate hierarchical prior (Amir-Ahmadi et al., 2018). A

number of applications opt for a "manual" approach (D’Agostino et al., 2013). However, it is

understood that no tuning, however careful it may be, can overcome the hardship of fitting

random-walks when the true βt’s look nothing like it.

Econometrically, one way to more formally connect this paradigm to recent work on TVPs is

to adopt the view that RF are adaptive kernel estimators (Meinshausen, 2006; Athey et al., 2019;

Friedberg et al., 2018). That is, the tree ensemble is a machine generating kernel weights. Once

those are obtained, estimation amounts to weighted least squares (WLS) problem with a Ridge

penalty. By running (1) recursively, one obtains terminal nodes/leaves Lb() to construct kernel

weights

αt (x0) =
1
B

B

∑
b=1

1 {Xt ∈ Lb (x0)}

|Lb (x0)|

to use in

∀t : argminβt

{

T

∑
τ=1

αt (sτ) (Yτ − Xτβτ))
2 + λ‖βt‖2

}

. (3)

As shown in Goulet Coulombe (2020a), standard random walk TVPs are in fact a smoothing

splines problem, and for those, a reproducing kernel exists (Dagum and Bianconcini, 2009). Gi-

raitis et al. (2014) drop the random walk altogether and proposed to use kernels directly. Any-

how, in both cases, the only variable entering the kernel is t. In other words, only proximity

in time is considered for the clustering of observations. This makes the seemingly flexible es-

timator in fact quite restrictive – and dependent on its inherent smoothness prior. Moreover,
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standard kernel methods are known to break down even in medium dimensions (say <10 vari-

ables) (Friedberg et al., 2018). Therefore, augmenting t – the sole variable in the kernel (implicit

of explicit) of traditional TVP methods – with additional regressors is not an option. No such

constraints bind on the RF approach.

2.5 Relationship to Standard Random Forest

The standard RF is a restricted version of MRF where Xt = ι, λ = 0 and ζ = 0. In words, the only

regressor is a constant and there is no within-leaf shrinkage. Previous sections motivated MRF

as a natural generalization of non-linear time-series models. At this point, a reasonable question

emerges from a ML standpoint. Why should we prefer the partially linear MRF to the fully

nonparametric RF? One reason is statistical efficiency. The other is potential for interpretation.

2.5.1 Smooth Relationships are Hard Relationships (to estimate)

In finite samples, plain RF can have a hard time learning smooth relationships – like a AR(1)

process. This is bad news for time series applications. For prediction purposes, estimating

yt = φyt−1 + εt

by OLS implies a single parameter. However, approximating the same relationship with a tree

(or an ensemble of them) is far more consuming in terms of degrees of freedom. To get close

to the straight line once parsimoniously parametrized by φ, we now need a succession of many

step functions.9 With short time series, modeling smooth/linear relationships in such a way is a

luxury one rarely can afford. The mechanical consequence is that RF will waste many splits on

capturing the linear part, and may run out of them before it gets to focus more subtle nonlinear

phenomena.10 In a language more familiar to economists, this is simply running out (quickly)

of degrees of freedom. MRF provides a workaround. Modeling the linear part concisely leaves

more room to estimate the nonlinear one. By its more strategic budgeting of degrees of freedom,

the resulting (estimated) partially linear model could be, in fact, more non-linear than the fully

nonparametric one.

This paper is not the first to recognize the potential need for a linear part in tree-based models.

For instance, both Alexander and Grimshaw (1996) and Wang and Witten (1996) proposed linear

regressions within a leaf of a tree, respectively denominated "Treed Regression" and "Model

9In a standard regression setup, nobody would model a continuous variable as an ordinal one unless some wild
nonlinearities are suspected.

10One necessary (but not sufficient) symptom is AR terms being flagged as really important by typical RF variable
importance measures (one example is Borup et al. (2020b)).
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Trees". More focused on real activity forecasting, Woloszko (2020) and Wochner (2020) blend

insights from macroeconomics to build better-performing tree-based models.11 On a different

end of the econometrics spectrum, Friedberg et al. (2018) proposed to improve the nonparametric

estimation of treatment effect heterogeneity by combining those ideas developed for trees into a

forest.12 To my knowledge, this paper is the first to exploit the link between this strand of work

and the sempiternal search for the "true" state-dependence in empirical macroeconomic models.

2.5.2 A Note on Interpretability

The interpretation of ML outputs is now a field of its own (Molnar, 2019). RF is widely regarded

as a black box model which needs to be interpreted using an external device. Indeed, it usually

averages over 100 trees of substantial depth, which makes individual inspection impossible.

MRFs partially circumvent the problem by providing time series βt which can be examined, and

have a meaning as time-varying parameters for the linear model. Thus, whatever one may do

with TVPs, it can be done with GTVPs. There are also some new avenues. For instance, Variable

Importance (VI) measures usually deployed to dissect RF’s prediction can be used to inspect

what is driving βt’s. Those will be used in section 5.3.

A popular approach to dissect a standard RF is to use interpretable surrogate tree models to

partially replicate the black box model’s fit. The idea can be transferred to MRF (Molnar, 2019).

In fact, partial linearity facilitates such an exercise. The linear part in MRF splits the nonpara-

metric atom into different pieces (Xt,kβt,k) which can be analyzed separately. Each time series βt,k

can be dissected with its own surrogate model, and meaningful combination/transformations

of coefficients can be considered.

2.6 Engineering St

This section discusses principles guiding the composition of St, which is the raw material for F

in both MRF and plain RF. Macroeconomic data sets (e.g. FRED, McCracken and Ng 2020) typi-

cally contains many regressors and few observations. After incorporating lags for each variable,

it can easily be the case that predictors outnumber observations. The curse of dimensionality

has both computational and statistical ramifications. The former is mostly avoided in RF since it

does not rely on inverting a matrix. However, the statistical curse of dimensionality, a feature of

the regressors/observations ratio, remains a difficulty to overcome.

11Specifically, Wochner (2020) also note that using trees in conjunction with factor models can improve GDP
forecasting. An analogous finding will be reported in section 4.

12More broadly, this is extending to trees and ensemble of trees the "classical" non-parametrics literature’s knowl-
edge that local linear regression usually has much better properties (especially at the sample boundaries) than the
Naradaya-Watson estimator.
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There are two extreme ways of reducing dimensionality: sparse or dense. The former selects

a small number of features out of the large pool in a supervised way (e.g. LASSO), the latter

compresses the data in a set of latent factors that should span most of the original regressors

space. This is often seen as a necessity to choose one of them.13 However, in a regularized model,

both can be included, and we can let the algorithm select an optimal combination of original

features and factors.14 This is useful — it is not hard to imagine a situation where opting for one

or the other would prove suboptimal to a more nuanced solution.

LAG POLYNOMIALS. From a predictive standpoint, residuals autocorrelation implies there is

forecasting power left on the table. To get rid of it, many lags might be necessary. In multivariate

contexts (like that of a VAR), doing so quickly pushes the model to overfit. A standard solution

is Bayesian estimation and the use of priors in the line of Doan et al. (1984), which are specially

designed for blocks of lags structures. Outside of the VAR paradigm, there is an older literature

estimating restricted/regularized lag polynomials in Autoregressive Distributed Lags (ARDL)

models (Almon, 1965; Shiller, 1973). More recently, these methods have found new applications

in mixed-frequency models (Ghysels et al., 2007) where the design of the model leads to an

explosion of lag parameters.

(M)RF experiences an analogous situation. A tree may waste many splits trying to efficiently

extract information out of a lag polynomial: for instance, splitting on the first lag, then the 7th

one, then the 3rd one. In linear parametric models, the above methods can extract the relevant

information out of a lag polynomial without sacrificing many degrees of freedom. A significant

roadblock to this enterprise in the RF paradigm is that there are no explicit lag polynomials

to penalize. An alternative route is to exploit the insight that RF can choose for itself relevant

restrictions. We just have to construct regressors that embodies those, and include them in St.

MOVING AVERAGE FACTORS. To extract the essential information out of the lag polynomial of

a specific variable, a linear transformation can do the job. Consider forming a panel of P lags of

variable j:

X1:P
t,j ≡ [Xt−1,j ... Xt−P,j] .

We want to form weighted averages of the P lags so that it summarizes most efficiently the

temporal information of the feature indexed by j.15 The weighted averages with that property

will be the first few factors (extracted by PCA) of X1:P
t,j .16 This can be seen as the time-dimension

13In macro forecasting work using RF, Goulet Coulombe et al. (2019) follow a dense approach by only including
factors while Borup et al. (2020a) opt for sparsity by proposing a Lasso pre-selection step.

14A more detailed discussion of this can be found in Appendix A.1.
15P is a tuning parameter the same way the set of included variables in a standard factor model is one.
16While I work directly with the latent factors, a related decomposition called singular spectrum analysis works

with the estimate of the summed common components. Since this decomposition naturally yields a recursive for-
mula, it has been used to forecast macroeconomic and financial variables (Hassani et al., 2009, 2013).
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analog to the traditional cross-sectional factors. The latter are defined such as to maximize their

capacity to replicate the cross-sectional distribution of Xt,j fixing t while the Moving Average

Factors (MAFs) proposed here seek to represent the temporal distribution of Xt,j for a fixed j

in a lower-dimensional space.17 By doing so, our goal to summarize the information of X1:P
t,j

without modifying the RF algorithm (or any other) is achieved: rather than using the numerous

lags as regressors, we can use the MAFs which compress information ex-ante. As it is the case

for standard factors, MAF are designed to maximize the explained variance in X1:P
t,j , not the fit

of the final target. It is the RF part’s job to select the relevant linear combinations among St so

to maximize the fit. Finally, it is noteworthy that MAFs facilitate interpretation. As these are

moderately sophisticated averages of a single time series, they can be viewed as a smooth index

for a specific (but tangible) economic indicator. This is arguably much easier to interpret than a

plethora of lags coefficients.

The take-away message from this subsection can be summarized in three points. First, there

is no need to choose ex-ante between sparse and dense when the model performs selection/reg-

ularization. We can let the algorithm find the optimal balance. Second, to make the inclusion

of many lags useful, we need to regularize the lag polynomial. Third, such compression can be

achieved most easily by generating MAFs and using those as regressors in RF – or any algorithm.

2.7 Quantifying Uncertainty of βt’s Estimates

Taddy et al. (2015) and Taddy et al. (2016) interpret RF’s prediction as the posterior mean of

a tree functional T (the splitting algorithm) obtained by an approximate Bayesian bootstrap.18

Through those lenses, each tree is a posterior draw. Seeing T as a Bayesian nonparametric

statistic (independently of the DGP) is of even greater interest in the case of MRF.19 It provides

inference for meaningful time-varying parameters βt rather than an opaque conditional mean

function. Such techniques, originating from Ferguson (1973), have seldomly found applications

in econometrics, such as Chamberlain and Imbens (2003) for instrumental variable and quantile

regressions.

While the Bayesian Bootstrap desirably does not assume many things about the data, it yet

makes the assumption that Zt = [yt Xt St] is an iid random variable. Thus, it cannot be used

17In the spirit of the Minnesota prior, one can assign decaying (in p) weights to each lag before running PCA. This
has the analogous effect of shrinking more heavily the distant lags and less so the recent ones.

18The connection between Breiman (1996)’s bagging and Rubin (1981)’s Bayesian Bootstrap was acknowledged
earlier in Clyde and Lee (2001).

19An alternative (frequentist) inferential approach is that of Friedberg et al. (2018). However, their asymptotic
argument requires estimating the linear coefficients and the kernel weights on two different subsamples. This is
hard to reconciliate with our goal of modeling time-variation and different regimes throughout the entire sample.
Furthermore, when the sample size is small, splitting the sample in such a way carries binding limitations on the
complexity of the estimated function.
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directly as a proper theoretical motivation for using the bag of trees directly to conduct inference.

I propose a block extension to make Taddy et al. (2015)’s convenient approach amenable to this

paper’s setup.

Block Bayesian Bootstrap (BBB) is a simple redefinition of Z so that it is plausibly iid. Hence,

in the spirit of traditional frequentist block bootstrap (MacKinnon, 2006), blocks of a well-chosen

size will be exchangeable. Thus, a new variable can be defined Zb ≡ [yb:b̄ Xb:b̄ Sb:b̄]. There will

be a total of B = T/block size fixed and non-overlapping blocks. Under covariance stationarity,

Z̃b = vec(Zb) are iid, for a properly chosen block length.20 Analogously to Taddy et al. (2015),

block-subsampling is preferred to BBB in implementations since it is faster and gives nearly

identical results. Details of BB and BBB are available in Appendix A.2.

It is reasonable to wonder how the above procedure deals with the possible presence of het-

eroscedasticity. Fortunately, the nonparametric bootstrap/subsampling that RF uses is in fact the

"pairs" bootstrap of Freedman et al. (1981) which is valid under general forms of heteroscedastic-

ity (MacKinnon, 2006). From a Bayesian point of view, Lancaster (2003) show that the obtained

variance for OLS from using such a bootstrap is asymptotically equivalent to that of White’s

sandwich formula.21 Hence, in the spirit of heteroscedasticity-robust estimation, no attempt will

be made at directly evolving volatility (which is a GLS approach). Rather, it will be reflected in

larger bands for periods of smaller signal-to-noise ratio.

3 Simulations

Simulations are divided in two parts. The first shows that Autoregressive Random Forest (ARRF)

delivers forecasting gains over standard nonlinear time series model when the true DGP mixes

both endogenous and exogenous time-variation. Moreover, the former is very resiliant against

traditional approaches, even when the DGP matches the latter’s restrictive assumptions. Addi-

tionally, those simulations will numerically document the superiority of ARRF over RF when the

AR part is pervasive (as discussed in section 2.5.1). Overall, this helps rationalizing forecasting

results from section 4, where ARRF supplants ∼TARs for the vast majority of targets.

The second simulations section considers simpler linear parts and look at how the algorithm

behaves when St is large. Further, I focus on βt itself and its credible regions. The main point is

to visually show that (i) GTVPs adapts nicely to a wide range of DGPs and (ii) are not prone to

discover inexistent time-variation.
20In practice, I will use block of two years for both quarterly or monthly data.
21Poirier (2011) propose better priors and Karabatsos (2016) incorporate such ideas into a generalized ridge re-

gression.
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3.1 Comparison of ARRF to Traditional Nonlinear Autoregressions

I consider 3 DGPs: Autoregression (AR), Self-Exciting Threshold ARs (SETAR), and a SETAR

model that collapse to an AR (via a structural break). Those DGPs include two types of time

variations, endogenous (yt−1) and exogenous (t).22 They are meant to encapsulate compactly

the usual nonlinearities considered in empirical studies, like dependence on the state of the

business cycle (Auerbach and Gorodnichenko, 2012a; Ramey and Zubairy, 2018) and exogenous

time variation (Clarida et al., 2000).

For all DGPs, Xt = [1 yt−1 yt−2]. The simulated series sample size is either T = 150 or

T = 300. The last 40 observations of each sample consist the hold-out sample for evaluation. I

forecast 4 different horizons: h = 1, 2, 3, 4. Models are estimated once at the last available data

point.

MODELS. SETAR, Rolling-Window (RW) AR, Random Forest (RF) and Autoregressive Random

Forest (ARRF) are included. Iterated SETAR forecasts are obtained via the standard bootstrap

method (Clements and Smith, 1997) and all the others are generated via direct forecasting. That

is, in the latter case, I fit the model directly on yt+h rather than iterating forward the one-step

ahead forecast. To certify that the observed differences between SETAR and other models is not

merely due to the choice of iterated vs direct forecasts – a non-trivial choice in many environ-

ments (Chevillon, 2007) –, I also include SETAR-d where "d" means its forecasts were alterna-

tively obtained by direct forecasting.

In all simulations, MRF’s St includes 8 lags of yt and a time trend, which match what will be

referred to in section 4 as "Tiny ARRF". Thus, unlike ∼TARs, it is "allowed" to split on what we

know (by the DGP choices) to be useless regressors (especially at horizon h = 1). The specified

linear part for all models matches that of the true DGP (Xt = [1 yt−1 yt−2]).

PERFORMANCE METRIC. Performance is evaluated using the mean squared prediction error

(MSPE). In simulation s, for the forecasted value at time t made h steps ahead, I compute

RMSEh,m =

√

√

√

√

1
40 × 100

100

∑
s=1

∑
t∈OOS

(ys
t − ŷs,h,m

t−h )2.

100 different simulations are considered, which means the total number of squared errors being

averaged for a given horizon and model is 100×40=4000. To provide a visually useful normaliza-

tion, bar plots report RMSEh,m’s relative to that of the oracle, who knows perfectly the law of mo-

tion of time-varying parameters βt.23 Formally, the metric is ∆oRMSEh,m = RMSEh,m/RMSEh,o − 1.

22Since a structural break is just a threshold effect with respect to variable t, one can conclude without loss of
generality that similar results would be obtained using different additional switching variables.

23Precisely, if the model has a break and a switching variable, it knows exactly the break points, thresholds and
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SETAR MORPHING INSTANTLY INTO AR(2). The two sources of time-variation are combined

to display MRF’s edge in this not so implausible situation. Further,

DGP 1 =







SETAR, if t < T/2

AR, otherwise

can rightfully be hypothesized for some economic time series: complex dynamics up until the

mid-1980’s followed by a very simple autoregressive structure during the Great Moderation.24

In Figure 1a, MRF comes out as the best model for all horizons in the smaller sample. RF fails

particularly at short horizons because it attempts to model all dynamics nonparametrically. Dou-

bling the sample size helps, but its disimprovement with respect to the oracle remains at least

twice as large as that of MRF. SETAR and AR both focus on dynamics but are misspecified. Their

increase in relative RMSE is about thrice that of MRF at longer horizons for the shorter sample.

For horizon 1, RW-AR does equally well as MRF, which is expected in this DGP since it discards

earlier observations we only know ex-post to be harmful. Thus, in this DGP much akin to that

of the hypothetical inflation tree of section 2.1, MRF comes out as the clear winner.

PERSISTENT SETAR. DGP 2, with βt = I(yt−1 ≥ 0)[2 0.8 − 0.2] + I(yt−1 < 0)[0.25 1.1 −

0.4], represents an endogenous switching process which may suit well real activity variables: it

includes high/low regimes, and mildly different dynamics in each of them. Can MRF match

traditional nonlinear times series model when the world is nonlinear, yet simple? The broad

answer from Figure 1b is yes. For all horizons and sample sizes considered, MRF is practically as

good as SETAR, the optimal model in this context. Because of its capacity to control overfitting,

MRF will be competitive even if nonlinearities turn out to be as simple as often postulated in

the empirical macroeconomics literature. With the relative importance of changing persistence,

RF cannot match MRF’s performance and is trailing behind with RW-AR.25 Nevertheless, RF

improves substantially at shorter horizons when the sample size increase. Finally, AR is resilient

at longer horizons but is much worse than MRF and SETAR at shorter ones.

NO TIME-VARIATION. Given the widespread worry that ML-based algorithms can overfit, a

time-invariant DGP is a natural check.26 Can MRF still deliver competitive performance if reality

equates simple linear dynamics? Results for DGP 3, an AR(2) process with β = [0 0.7 − 0.2], are

reported in Figure 1c. As expected, AR is the best model for all horizons and both sample sizes.

AR parameter values in each regime. The only things the oracle does not know are the future shocks (ǫt+h), and the
out-of-sample evolution of parameters (βt+h) – unless the latter is purely deterministic.

24The AR has β = [0 0.7 − 0.2] and the SETAR has βt = I(yt−1 ≥ 1)[2 0.8 − 0.2] + I(yt−1 < 1)[0.25 0.4 − 0.2].
Results for the latter in isolation are in Appendix A.5.

25In Appendix A.5, the case where the changing persistence is less important is considered.
26Also, the incredible resilience of linear AR models is well documented in the macroeconomic forecasting litera-

ture (see Kotchoni et al. (2019) and references therein).
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(a) DGP is SETAR morphing into AR(2).

(b) DGP is Persistant SETAR.

(c) DGP is Plain AR(2).

Figure 1: Displayed are increases in relative RMSE with respect to the oracle.
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The RW-AR suffers from high variance and it is assumed that tuning the window length in a

data-driven way would help. Plain RF struggles irrespective of the sample size. For the smaller

sample, MRF performs as well as the tightly parametrized SETARs. Their marginal increases in

RMSE with respect to the oracle are typically less than 10%, which is small in contrast to that of

previous DGPs. More observations generally helps AR, the iterated SETAR, and MRF especially

at longer horizons.

ABOUT MISSPECIFICATION OF Xt . Most of the reported gains from using MRF come from

avoiding misspecification when a more complex DGP arises. What happens if the arbitrary

linear part in MRF, Xt, is itself misspecified? Figure 14 in the appendix report corresponding

results. For all DGPs under consideration, a "Bad" MRF, where Xt is composed of two white

noise series (instead of the first two lags of yt), performs similarly well (or bad) as plain RF.27

SUMMARY. First, when the true DGP is not that of the tightly parametrized classical nonlinear

time series model, the more flexible MRF does better. Second, when classical nonlinear time

series model are fitted on their corresponding DGPs, those perform better than MRF – but only

marginally. Third, when there are pervasive linear autoregressive relationships, plain RF strug-

gles. Fourth, MRF and RF relative performance both increase with the number of observations

but MRF’s one increases faster if the linear part is well-chosen. In Appendix A.5, results for 3 ad-

ditional DGPs are reported: another SETAR, AR with a structural break, and SETAR morphing

in another SETAR (through a break). Again, MRF is shown to have an edge when other models

are misspecified and almost as good when those are not.

3.2 A Look at GTVPs when St is Large

A notable difference between the simulations presented up to now and the applied work being

carried in later sections is the size of St. In many macro applications, there is no shortage of

variables to include in MRF’s F . For instance, the FRED-QD data base (McCracken and Ng,

2020) contains over 200 potential predictors that can join lags of y and a time trend within St. As a

result, there is now considerable interest in allowing for time variation in empirical models using

large information sets. For instance, Koop and Korobilis (2013) propose large TVP-VARs while

Abbate et al. (2016) extend Bernanke et al. (2005)’s factor-augmented VAR to be time-varying.

Interestingly, those papers (and the corresponding literature) almost exclusively focus on a setup

where, in MRF notation, Xt is large and St is extremely small (usually just t). Of course, MRF

27This result may not hold, however, when the law of motion for the intercept is highly complex and requires a
great number of split (unlike what is considered here). This is due to the linear part restricting the depth of trees
(with to what plain RF could allow for), especially if observations are scarce. In that regard, increasing the ridge
penalty (via λ) will help. Nevertheless, in practice, it is a safer bet to use a small linear part if uncertainty around its
composition is high. More on this and the effect of hyperparameters can found in appendix A.4.
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could deal with this case (as discussed in section 2.3), but its edge will be more apparent when

we let the RF part deal with large data and keep Xt concise. Indeed, in addition to lessened

misspecification concerns, RFs also benefits from more data through increased randomization –

which prevents fully grown trees from overfitting (Breiman, 2001; Goulet Coulombe, 2020b).

The additional simulations go as follow. First, I simplify the analysis by looking at a static

model with mutually orthogonal but autocorrelated regressors X1 and X2, both driving yt ac-

cording to some process. I simulate each of them for 1000 periods and estimate the models with

the first 400 observations. The remaining 600 are used to evaluate the out-of-sample perfor-

mance. The signal to noise ratio is calibrated to 2/3 which is about what is found (out-of-sample)

for most models in the empirical section.

The only remaining questions are that of the constitution of St and the generation of βt’s.

I create two autocorrelated (but not cross-correlated) factors. Out of each of them, I create 50

series with a varying amount of additional white noise.28 Joining those 100 series with lags of

yt and a time trend, the final size of St is slightly above 100. Finally, βt’s are functions of the

underlying first factor which (like the second) is not directly included in the data set. In certain

DGPs, some βt’s will also be a pure function of t (like random walks, structural breaks).29 Table

1 summarizes the six DGPs in words.

Table 1: Summary of Data-Rich Simulations DGPs

DGP # Intercept β
X1
t β

X2
t Residuals Variance

1 Switching Switching Switching Flat
2 Flat Random Walk Random Walk Flat
3 Flat Latent factor directly Slow Change (function of t) Flat
4 Flat Switching Slow Change (function of t) Flat
5 Flat Switching Structural Break Flat
6 Flat Flat Flat Stochastic Volatility

More illustratively, Figures 2 and 15 (appendix) plots one example of each DGPs as well

as the estimated GTVPs and their credible region (as discussed in section 2.7). It is visually

obvious that GTVPs are adaptive in the sense that it can discover which kind of time-variation is

present in the data while estimating it. In Figure 2a, MRF successfully estimate the rather radical

switching regimes present in all coefficients. In Figure 2b, MRF realizes that almost all of St is

useless because true βt follow random walks. Rather, it manages to fit βt’s nicely by relying on

a multitude of t splits. In Figure 2c, things get "easier" for the true βX1,t as it is driven directly

by the first latent factor. MRF discovers that and leverage it to have a very tight fit for it, both

28To be precise, their standard deviation is U[0.5, 3]% that of the original factor standard deviation.
29To clarify, the second factor and underlying series are completely useless to the true DGP – arguably mimicking

the inevitable when using a data base of the size of FRED-QD.
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(a) DGP 1

(b) DGP 2

(c) DGP 3

Figure 2: The grey bands are the 68% and 90% credible region. After the blue line is the hold-out
sample. Green line is the posterior mean and orange is the truth. The plots include only the first
400 observations for visual convenience.
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in-sample and out-of-sample. This is merely a reflection that if time variation can be constructed

by simple interaction terms, this is certainly the easiest statistical route to by – and MRF chooses

it thanks to its inherent ability to perform "time variation selection".

Figure 16 reports distributions of RMSE differentials with respect the oracle (the forecast that

knows the βt’s law of motion). MRF performance is compared to OLS, Rolling-Window OLS

(RW-OLS) and plain RF. As expected, MRF outperforms all alternatives by wide margins for

most DGPs. By construction, RW-OLS and OLS also perform well for DGP 5 (random walks)

and DGP 6 (constant parameters). Nonetheless, it is reassuring to see that MRF either performs

much better than OLS or worse by a thin margin (in cases with no time-variation).

4 Macroeconomic Forecasting

In this section, I present results for a pseudo-out-of-sample forecasting experiment at the quar-

terly frequency using the dataset FRED-QD (McCracken and Ng, 2020). The latter is publicly

available at the Federal Reserve of St-Louis’s web site and contains 248 US macroeconomic

and financial aggregates observed from 1960Q1. The forecasting targets are real GDP, Unem-

ployment Rate (UR), CPI Inflation (INF), 1-Year Treasury Constant Maturity Rate (IR) and the

difference between 10-year Treasury Constant Maturity rate and Federal funds rate (SPREAD).

These series are representative macroeconomic indicators of the US economy which is based on

Goulet Coulombe et al. (2019) exercise for many ML models, itself based on Kotchoni et al. (2019)

and a whole literature of extensive horse races in the spirit of Stock and Watson (1998b). The

series transformations to induce stationarity for predictors are indicated in McCracken and Ng

(2020). For forecasting targets, GDP, UR, CPI and IR are considered I(1) and are first-differenced.

For the first two, the natural logarithm is applied before differencing. SPREAD is kept in "levels".

Forecasting horizons are 1, 2, 4, 6 and 8 quarters.

The pseudo-out-of-sample period starts in 2003Q1 and ends 2014Q4. I use expanding win-

dow estimation from 1961Q3. Models are estimated (and tuned, when applicable) every two

years. For all models except SETAR and STAR, I use direct forecasts, meaning that ŷt+h is ob-

tained by fitting the model directly to yt+h rather than iterating one-step ahead forecasts. ∼TAR

iterated forecasts are calculated using the block-bootstrap method which is standard in the liter-

ature (Clements and Smith, 1997).

Following standard practice, the quality of point forecasts is evaluated using the root Mean

Square Prediction Error (MSPE). For the out-of-sample (OOS) forecasted values at time t of vari-
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able v made h steps ahead, I compute

RMSEv,h,m =

√

1
#OOS ∑

t∈OOS
(yv

t − ŷv,h,m
t−h )2.

The standard Diebold and Mariano (2002) (DM) test procedure is used to compare the predic-

tive accuracy of each model against the reference AR(4) model. RMSE is the most natural loss

function given that all models are trained to minimize the squared loss in-sample.

It has been argued in section 2.6 that feature engineering matters crucially when the num-

ber of regressors exceeds the sample size. St, the set of variables from which RF can select,

is motivated by such concerns. Its exact composition is detailed in Table 2. Among other

things, it includes both cross-sectional and moving average factors, which are compressing

information along their respective dimensions. The usefulness of MAFs is further studied in

Goulet Coulombe et al. (2020a) and found to help, mostly with tree-based algorithms. However,

it is supplanted by a more computationally demanding (but more general) transformation of the

raw data that Goulet Coulombe et al. (2020a) propose specifically for ML-based macroeconomic

forecasting.

Table 2: Composition of St

What Why How

8 lags of yt Endogenous SETAR-like dynamics –

t Exogenous "structural" change/breaks –

2 lags of FRED Fast switching behavior –

8 lags of 5 traditional factors F Compress cross-sectional information ex-ante Usual PCA

2 MAFs for each variable j Compress lag polynomial information ex-ante PCA on 8 lags of j

MODELS. To better understand where the gains from MRF are coming from, I include models

that use different subsets of ideas developed in earlier sections. Those are summarized in Table

3. The competitive data-rich models are in the benchmarks group. Non-linear time series models

are also included as they share an obvious familiarity with ARRF. "Tiny" versions of both ARRF

and RF are considered to gauge the effect from only having access only to a small St — this

could be the case for many non-US applications. Conversely, this helps quantify how a data-rich

environment contributes to the success of ARRF versus its plain flexibility. Indeed, Tiny ARRF

corresponds to what was shown in the "data-poor" simulations (section 3) to be a generalization

of ∼TARs and related models.

Here are some remarks motivating some inclusions and specifications choices. To assess the

marginal effects of MAFs alone, Lasso, Ridge and RF are considered using St — those are known

to handle high-dimensional feature space. When it comes to FA-ARRF, I opt for a parsimonious
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linear specification including one lag of the first two factors. First, concise models make interpre-

tation easier. Second, considering compact linear specifications within MRF is usually the better

strategy. Parameters (including the intercept) are all RFs in their own right and can palliate to

the omission of marginally important features, if need be. Consequently, it is desirable to fix a

humble linear part and let βt’s take care of the rest.30 Finally, as discussed in McCracken and Ng

(2020), the first factor mostly loads on real activity variables while the second is a composite of

forward-looking indicators like term spreads, permits and inventories. They are baptized and

interpreted accordingly.

Table 3: Forecasting Models

Name Acronym Linear Part (Xm
t ) RF part

Autoregression AR [1, yt−{1:4}] ∅

Factor-Augmented Autoregression FA-AR [1, yt−{1:4}, F1,t−{1:2}, F2,t−{1:2}] ∅

Plain Random Forest RF ∅ Raw data31

Low-Dimensional Plain RF Tiny RF ∅ [yt−{1:8}, t]

Plain RF but using St RF-MAF ∅ St

RF-MAF on de-correlated yt AR+RF Filter yt first with an AR(2), then RF St

Autoregressive Random Forest ARRF [1, yt−{1:2}] St

Low-Dimensional Autoregressive RF Tiny ARRF [1, yt−{1:2}] [yt−{1:8}, t]

Factor-Augmented Autoregressive RF FA-ARRF [1, yt−{1:2}, F1,t−1, F2,t−1] St

Vector Autoregressive RF32 VARRF [1, yt−{1:2}, GDPt−1, IRt−1, INFt−1] St

Self-Exciting Threshold AR SETAR [1, yt−{1:2}] ∅

Smooth Transition AR33 STAR [1, yt−{1:2}] ∅

10 years Rolling-Window AR RW-AR [1, yt−{1:2}] ∅

Time-Varying Parameters AR34 TV-AR [1, yt−{1:2}] ∅

LASSO using St LASSO-MAF St ∅

Ridge using St Ridge-MAF St ∅

Notes: models are classified in 3 categories: benchmarks, MRFs (and related prototypes), and misc (non-linear time
series models, other reasonable additions). The main analysis in section 4.1 omits the 3rd club for parsimony.

30Further backing a parsimonious choice (with MRF), McCracken and Ng (2020) report that the first two factors
account for 30% of the variation in the data while adding two more only bumps it up to 41%, making the last two
presumably more disposable in our context.

31Precisely, this means 8 lags of FRED-QD, after usual transformations for stationarity have been applied.
32Note that the VAR appellation refers to the linear equation consisting of typical "small monetary VAR". The

model remains univariate and direct forecasts are used.
33The state variable is yt−1, as in SETAR.
34Estimated and tuned via the Ridge approach proposed in Goulet Coulombe (2020a).
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4.1 Main Quarterly Frequency Results

Violin plots are used throughout to summarize dense RMSEs tables (like Table 4). I report the

distribution of RMSEv,h,m/RMSEv,h,AR. This is informative about the overall ranking and ver-

satility of considered models. Of course, being ranked first does not imply being the best model

for every h and v. Rather, it means that it performs better on average, over all targets.

Figure 3: The distribution of RMSEv,h,m/RMSEv,h,AR. The star is the mean and the triangle is the median.

Here are interesting observations from Figure 3. Clearly, MRFs deliver important gains over

both the AR and FA-AR benchmarks (the latter is second to last). ARRF has a noticeably small

mass above the 1 line. In other words, there are no targets for which ARRF does significantly

worse than its OLS counterpart, which makes it atypically adaptable among nonlinear autore-

gressions. A look at Table 4 confirms this observation also extends to FA-ARRF vs FA-AR. The

simplification AR+RF, ranks third with a performance that is much more volatile. This suggests

that imposing time-invariant dynamics can sometimes help (see one example in Figure 5), but

can also be highly detrimental (as reported for inflation). Of course, that we do not know ex-ante,

and it is why AR+RF does not inherit ARRF’s "off-the-shelf" quality.

MAFs are useful: RF-MAF does much better than RF which uses the raw data. The latter only

exhibits conservative gains over the benchmark. Thus, it is understood that a fraction of MRFs’

forecasting gains emanates from considering more sensible transformations of time series data

– and which are trivially implementable. The relevance of MAFs is studied more systematically

in Goulet Coulombe et al. (2020a).
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FA-ARRF provides very substantial improvements, but can also fail. This is the linear part’s

doing: FA-AR will mostly work well for real activity variables while AR is a jack of all trades.

Thus, it is not surprising to see FA-ARRF inherit some of these uneven properties, albeit to a

much milder extent. For instance, in Table 4, FA-AR is noticeably worse than AR for all inflation

horizons, while FA-ARRF beats AR for all of them. This phenomenon is well summarized by

FA-AR being second to last overall, well behind FA-ARRF. VARRF has a behavior similar to that

of FA-ARRF, but with less highly noticeable gains.

Does a large St pay off? Most of the time, yes. It is worth re-emphasizing that restricting St

restricts the space of time-variations possibilities as well as the potential for trees diversification.

Nonetheless, if the restrictions are "true", gains are possible.35 This is reported to be a rare occur-

rence, with ARRF ≻ Tiny ARRF (and RF ≻ Tiny RF) for almost any target. Thus, we can safely

conclude that a rich St is desirable, with F being tasked with selection of relevant items.

As discussed in earlier sections, ARRF connects to the wider family of nonlinear autoregres-

sive models. It clearly does better on average than SETAR and Smooth-Transition TAR. This

advantage is attributable to both a more flexible law of motion and a large St. Tiny ARRF is bet-

ter than the ∼TAR group, while ARRF is much better. Linking this result to those of simulations,

this means that no ∼TAR is likely the true model.

REAL ACTIVITY TARGETS. Figure 4 reports results for UR. FA-ARRF dominates strongly. Table

4 confirms it is the best model for all horizons but the last one (8 quarters ahead, where the

encompassed RF-MAF is the best). Clearly, at an horizon of one quarter, the preferred model

successfully predicts the drastic rise in unemployment during the Great Recession. Rather than

responding with a lag to negative shocks (which is what we observe from AR and ARRF), the

model visibly predicts them. As a result, improvements in RMSE are between 25% and 30%

over AR for all horizons. Specifically, predicting UR (change) with FA-ARRF at h = 1 yields an

unusually high out-of-sample R2 of about 80%. The nearly perfect overlap of the yellow and

black lines highlight the absence of a one-step ahead shock around 2008. Note that FA-AR and

STAR forecasts are omitted from Figure 4b to enhance visibility. STAR forecasts are either similar

or worse than the benchmark (as often found for nonlinear time series models). FA-AR forecasts

at h = 1 follows a proactive pattern similar to the yellow line, but with a 1 to 2 quarter delay –

hence the inferior results.

For h = 2, the quantitative rise is nowhere near the realized one, but it reveals 6 months

ahead the arrival of a significant economic downturn. Additionally, ARRF and FA-ARRF both

flag one year ahead the arrival of a rise in unemployment, which is a quality shared by very few

models. The barplot in Figure 4 (and Table 4) provides a natural decomposition of FA-ARRF’s

35An interesting specific case is Tiny ARRF being close behind ARRF for inflation. This is intuitive given that INF
has often been associated with exogenous time variation.
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(a) RMSPEUR,h,m/RMSPEUR,h,AR(4)

(b) A look at some forecasts

Figure 4: Zooming on best model within each group for UR (change)

gains. Adding the MAFs to an otherwise plain RF procures an improvement of roughly 15%

across all horizons (RF-MAF ≻ RF, in Table 4). The linear FA-AR part and the rest of algorithmic

modifications discussed in section 2 provide an additional reduction of 10% to 15% depending

on the forecasted horizon (FA-ARRF ≻ RF-MAF and FA-ARRF ≻ FA-AR). It is noteworthy that

good results for h = 1 are mechanically close to impossible with a plain RF since it cannot

extrapolate – i.e., predict values of yt that did not occur in-sample. In contrast, this is absolutely

feasible within MRF thanks to the linear part.

GDP is known to have a lower signal-to-noise ratio. In Figure 18, FA-ARRF exhibits a bit

less than a 20% drop in RMSE over the AR and nicely grasp the 2008 drop one quarter ahead.36

However, FA-ARRF performance does not stand apart as much as it did for UR. One reason

36Diebold and Rudebusch (1994) proposed an empirically sucessful regime-switching factor model. Given that
line of work and more recent results in Wochner (2020), the FA-ARRF’s success is not an anomaly.
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can be traced visually to predicting higher post-recession growth than its competitors. Finally,

RF-MAF closing in on ARRF will be investigated on its own in section 5.2.1. In short, this occurs

because once the time-varying intercept is flexibly modeled by RF, there is very little room left

for autoregressive behavior (at the quarterly frequency).

SPREAD AND INFLATION. VARRF shines for SPREAD (Figure 19) by capturing key movements,

even up to a year ahead. The simpler AR+RF also does remarkably well. FA-ARRF provides

successful one-year ahead forecasts. Overall, these results highlight the common importance

of the autoregressive part, which is no surprise given SPREAD’s persistence. For INF, Table 4

displays that RF-MAF is the leading model (with ARRF close behind) reducing RMSEs by 12-

15% for all horizons. I investigate this with GTVPs in section 5.2.1.

5 Analysis

Based on forecasting results, I concentrate on FA-ARRF’s GTVPs. Additionally, its parameters

are easier to interpret (given factors are labeled) since regressors are mechanically orthogonal.

First, I look at βt and analyze their behavior around the Great Recession. Second, I compare

GTVPs to random walk TVPs, ex-post vs ex-ante, with a focus on the recessionary episode.

Finally, I use a surrogate model approach to explain of the parameters’ paths in terms of observed

variables.

5.1 Forecast Anatomy

βt’s characterize completely MRF’s forecasts. Thus, we can investigate GTVPs to understand

results from the previous section. The FA-ARRF forecasting equation is

yt+h = µt + φ1,tyt + φ2,tyt−1 + γ1,tF1,t + γ2,tF2,t + ut+h.

and naturally βt = [µt φ1,t φ2,t γ1,t γ2,t]. To avoid overfitting, β̂t’s are (as in section 3.2) the

mean over draws that did not include observations t − 4 to t + 4 (a two-year block) in the tree-

fitting process. Intuitively, this mimics in-sample the real out-of-sample experiment that starts

here in 2007Q2.37

Figure 5 displays GTVPs underlying the successful one-step ahead UR change forecast. The

intercept clearly alternates between at least two regimes and the "increasing UR" one is in ef-

fect circa 2008. In levels, this translates to UR alternating between a positive and negative (al-

beit small) trend. Overall persistence is strikingly time-invariant, and marginally smaller than

37Note that this is partially different from what gave the results reported in section 4.1, where the model was
re-estimated every 2 years. Here, estimation occurs once in 2007Q2.
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Figure 5: GTVPs of the one quarter ahead UR forecast. Persistence is defined as φ1,t + φ2,t. The gray bands are
the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard error. The vertical
dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.

for OLS estimates. The effect of F1, the real activity factor, is generally within OLS confidence

intervals, suggesting that while γ1,t almost doubles around recessions, this is subject to great

uncertainty.

What is less uncertain, however, is the magnified contribution of the forward-looking factor

F2 during recessionary episodes, which stands out as the key difference with OLS. γ2,t smooth-

switching behavior can be best interpreted by remembering that F2 is highly correlated with

capacity utilization, manufacturing sector indicators, building permits and financial indicators

(like spreads) (McCracken and Ng, 2020). Many of those variables are considered "leading"

indicators and have often been found to increase forecasting performance, mostly before and

during recession periods (Stock and Watson, 1989; Estrella and Mishkin, 1998; Leamer, 2007).

Recently, there has been renewed attention on the matter, with financial indicators highlighted

as capable of capturing economic activity downside risk (Adrian et al., 2019; Delle Monache

et al., 2020). This brand of nonlinearity can translate to a more active γ2,t around business cycle

turning points. MRF learns that, while OLS provides a clumsy average of two regimes. In Figure
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5, the obvious consequence of OLS’ rigidity is being over-responsive to leading indicators during

tranquil economic times, and under-responsive when it matters.

Section 5.3 will investigate formally the underlying variables driving this time variation. Fig-

ure 21 displays equivalent βt for GDP one quarter ahead. The pattern γ2,t is also visible for GDP,

but it is quantitatively weaker and more uncertain – which is is no surprise given GDP being

generally noisier than UR. Additionally, slow and relatively mild long-run change is observed.

Interestingly, γ1,t has been shrinking since the mid 1980s, and its regime dependence exhibited

in the first four recessions is no more.

5.2 Comparing Generalized TVPs with Random Walk TVPs

The relationship between random walk TVPs and GTVPs was evoked earlier. I compare them for

the small factor model. I estimate standard TVPs using the ridge regression technique developed

Goulet Coulombe (2020a). Conveniently, the procedure incorporates a cross-validation step that

determines the optimal level of time variation in the random walks.38

As Figure 5 suggested for µt and γ2,t, parameters can be subject to recurrent, rapid and statis-

tically meaningful shifts. Such behavior creates difficulties for random-walk TVPs, which put the

accent on smooth and slow structural change. Figure 6 confirms this conjecture. Standard TVPs

look for long-run change when regime-switching behavior is the main driving force. As a result,

they are flat and within OLS confidence bands, as often reported in the literature (D’Agostino

et al., 2013). Of course, more action will mechanically be obtained for TVPs when considering a

smaller amount of smoothness than what cross-validation proposed. In appendix A.7, I report

the same figures, but using the optimal smoothing parameters (as picked by CV) divided by

1000. This provides much more volatile random walk TVPs that are inclined, at certain specific

moments, to follow the GTVPs. However, it is clear in Figure 6 that the end-of-sample/revision

problem is worsen by the forced lack of smoothing.

It is known in the traditional TVP literature that there is a balance between flexible (but often

erratic) βt paths and very smooth ones where time variation may simply vanish.39 Since random-

walk TVPs are unfit for many forms of the time-variation present in macroeconomic data, high

bias estimates are usually reported as only them can keep variance at a manageable level. This

can have serious implications. Relying too much on time-smoothing can create a mirage of

long-run change and/or dissimulate parameters that mostly (but not solely) vary according to

expansions/recessions.

38I show with simulations that this much easier approach performs similarly well (and sometimes better) to
traditional Bayesian TVP-VAR, for model sizes that the latter is able to estimate.

39In the case of ridge regression-based TVPs, cross-validation is just a data-driven way of backing this necessary
empirical choice.

31



Figure 6: UR equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs estimated
with a ridge regression as in Goulet Coulombe (2020a) and the parameter volatility is tuned with k-fold cross-
validation — see Figure 26a for a case where TVP parameter volatility is forced to be higher. Ex Post TVP means
using the full sample for estimation and tuning as opposed to only using pre-2002 data as for GTVPs. The pale
orange region is the OLS coefficient ± one standard error. Pink shading corresponds to NBER recessions.

Another concern, particularly consequential for forecasting, is the boundary problem. As

discussed earlier, random-walk TVP models forecasts can suffer greatly from it because by con-

struction, forecasts are always made at the boundary of the variable on which the kernel is based

– i.e., time. One can deploy a 1-sided kernel, but this only alleviate a few pressing symptoms

without attacking the heart of the problem. In sharp contrast, GTVPs use a large information set

St to create the kernel, which implies that the likelihood of making a forecast at the boundary is

rather low, unless the RF part constantly selects t as splitting variable.

Figures 6 and 22 show, for both random walk and generalized TVPs, their full-sample ver-

sions (up to the end of 2014, "ex post") and their version with a training sample ending in 2007Q2

(the dashed blue line). There are two main observations. First, GTVPs are much less prompt

to rewrite recent history than random-walk TVPs. Indeed, the green line and the magenta one

closely follows each other all the way up to the end of the training sample. Second, while GTVPs

can change many quarters after 2007Q2 (like the GDP constant), they are generally very close to
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each other at the boundary – especially when the time variation is statistically meaningful (like

that of µt and γF2,t), which is what matters for forecasting. This is much less true of random

walk TVPs as there are clear examples where the two version differ for a long period of time (for

instance, the intercept and the coefficient on F2 in the GDP equation), and this often culminates

at the boundary.40

5.2.1 Why and When MRF Can Fail to Deliver Better Forecasts

MRF can sometimes be outperformed by simpler alternatives, like standard RF that incorporate

MAFs. When that occurs, it is usually due to the inadequacy of the linear part rather than GTVPs

themselves. Unlike traditional TVPs, GTVPs rarely provides a model worse than OLS.

Trivially, βt helps understanding relative performance. For instance, in the case of forecasting

inflation with the quarterly data set, ARRF does not supplant RF-MAF. The critical difference

between ARRF (reported in Figure 7a) and its restricted analog is that the two autoregressive

coefficients of the former are shut to 0.41 In Figure 7a, the estimates of ARRF broadly agree

with the view that inflation persistence has substantially decreased during and following Volker

disinflation (Cogley and Sargent, 2001; Cogley et al., 2010).

In terms of anticipated forecasting performance, such decline in persistence suggests a con-

strained version simply including µt may do better. The OOS evaluation period corresponds

to the region of Figure 7a where φ1,t + φ2,t is the nearest to 0. Given that observation, RF-MAF

mildly improving upon ARRF is less surprising. An analogous finding emerges for GDP at many

horizons. ARRF does not outperform RF-MAF like FA-ARRF and larger VARs versions of MRF

do. GTVPs showcased in Figure 7b provide a simple explanation. There is only a limited role for

persistence when allowing for a forest-driven µt. φ1,t + φ2,t is below the OLS counterpart most

of the time and the credible 68% credible region frequently includes 0. The ensuing forecast is

essentially a time-varying constant, which is what RF-MAF does.42 In sum, unlike many ML

offerings, MRF successes and failures can be understood via a time-varying parameter interpre-

tation. The helpfulness of this attribute cannot be overstated when thinking about future model

improvements.

40In (real) practice, all models would be re-estimated each quarter. However, it is worth pointing out that re-
estimating every period is much more important for random-walk TVP than it is for GTVPs. For such reasons, the
TV-AR in section 4 was the sole model estimated every period rather than every two years.

41Of course, lags of INF can still enter the forest part for µt, so RF-MAF does not suppress entirely the link between
current and recent inflation.

42This result is largely in accord with the reported sufficiency of a switching intercept (without additional autore-
gressive dynamics) to model US GDP in Camacho and Quiros (2007). However, Figure 7b suggests that there are
rather 3 regimes: recession, expansion before 1985 (growth rate ≈ 3.5%), expansion after 1985 (growth rate slightly
below 3%). The sufficiency of the switching intercept has also been documented in Markov-switching dynamic
factor models for Norway (Aastveit et al., 2016) and Germany (Carstensen et al., 2020).
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(a) Inflation

(b) GDP

Figure 7: GTVPs of the one-quarter ahead forecasts using ARRF. Persistence is defined as φ1,t + φ2,t. The gray
bands are the 68% and 90% credible regions. The pale orange region is the OLS coefficient ± one standard error.
The vertical dotted line is the end of the training sample. Pink shading corresponds to NBER recessions.

5.3 Cutting Down the Forest, One Tree at a Time

Evolving βt can limit macroeconomists in their ability to use the model for counterfactuals. Com-

plementarily, policy-makers will complain about the limited use for a model in which tomor-

row’s parameters are unknown (random walks). Fortunately, GTVPs may be the result of an

opaque ensemble of trees, but they are made out of observables rather than a multiplicity of

latent states. That is, they change, but according to a fixed structure. Hence, the reduced-form

coefficients could easily change, and yet remain completely predetermined as long as F itself is

stable. In this paradigm, a changing βt is not necessarily empirical evidence supporting Lucas

(1976)’s critique – rather, a changing F could be. Hence, dissecting F is inherently interest-

ing. One way to get started on this is to use well-established measures of Variable Importance

(VI), originally proposed in Breiman (2001). Those extract features driving the prediction. Con-

veniently, they can be adapted to inquire βt. Then, one can capitalize on VI’s insights to build

interpretable small trees parsimoniously approximating βt,k’s path.

34



The construction of upcoming graphs consists in two steps. I start by computing 3 differ-

ent VI measures: VIOOB (out-of-bag predictive performance), VIOOS (out-of-sample predictive

performance) or VIβ (for a specific coefficient rather than the whole prediction). Appendix A.3

contains a detailed explanation those and a discussion on how the current approach relates to

recent work in the ML interpretability literature. As a potential data set for the construction of

a surrogate tree, I consider the union of the 20 most potent predictors as highlighted by any of

the three VIs. The tree is pruned with a cost-complexity factor (usually referred to as cp) of

0.075. That tuning parameter is set such as to balance its capacity to mimic the original GTVP

and potential for interpretation.

5.3.1 Unemployment Equation

I limit the attention µt and γ2,t paths, which were argued of greater importance to FA-ARRF’s

success in forecasting UR. Also, the nature of their variation is easier to characterize with a single

tree (ex-post). Figures 8b and 8d show that paths can sometimes be summarized succinctly using

a handful of predictors.

Most of µt can be captured by two states which are determined by a cut-off on total private

sector employees (USPRIV): 0.021 (increasing unemployment) and -0.018 (decreasing). This first

layer basically classifies recession vs expansions in a very parsimonious way, which is inevitably

crude and imperfect. The additional split on a MAF of non-financial leverage provides a more

refined classification: there are more of less three states. The time series plot shows the alterna-

tion between two symmetrically opposed states of 0.021 and -0.025 (respectively entering and

exiting a recession) and a transitory (and seldomly visited) middle ground around 0.

The impact of F2 on UR switches significantly, and most of the action can be summarized by

a private sector employees dummy (USPRIV). The indicator’s movement downwards – which

usually commence from the onset of a recession – can double the effect of F2 on UR in absolute

terms. However, some high (absolute) γ2,t episodes would be left behind when merely using

USPRIV. Those are retrieved by an additional split with a MAF of average corporate bonds yield

with a BAA rating (lower medium grade).

The GTVP (green line) often plunges earlier than the ex-post surrogate tree’s replica (orange).

This is important, especially from a forecasting perspective. In Figure 23b, it is clear that leading

indicators (especially financial ones) play a prominent role in driving the GTVP γ2,t – well before

USPRIV starts showing signs of an imminent downturn. Since F2 is already composed mostly of

forward-looking variables, this hints at a convex effect of market-based expectations proxies.

Lastly, a word of caution. Given the points raised earlier in section 2.1, it is more appropri-

ate to see these surrogate trees as suggestive of one potential explanation. It is an open secret

that their exact structure is sensitive to small changes in the estimated path. For instance, little
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(a) µUR,h=1
t : Surrogate Model Replication (b) µUR,h=1

t : Corresponding Tree

(c) γUR,h=1
t,F2

: Surrogate Model Replication (d) γUR,h=1
t,F2

: Corresponding Tree

Figure 8: Surrogate βt,k Trees. Shade is 68% credible region. Pink shading is NBER recessions.

variation in βt is needed to observe a change in the exact choice of variables itself. As a result,

some of them may rightfully seem exotic when singled out in such a simple tree. GTVPs, as the

product of a forest, will more often than not rely on a multitude of indicators from a specific

group (which we observe in Figure 23a) rather than a single indicator.

5.3.2 Monthly Inflation Equation

As detailed in Appendix A.6, FA-ARRF is a very competitive model for monthly inflation at

all horizons. By its use of F1, the real activity factor, it has the familiar flavor of a Phillips’

curve (PC).43 This is of interest given PCs have at best a very uneven forecasting track record

43As noted in Stock and Watson (2008), the plethora of output gap indicators used in literature makes the use of
a common statistical factor a credible alternative.
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(Atkeson et al., 2001; Stock and Watson, 2008; Faust and Wright, 2013). For instance, simple

autoregressive/random walk/historical mean benchmarks often do much better.

Given its paramount importance within New Keynesian models, many explanations have

been proposed for PC forecasts failures. The curve could be time-varying in a way that anni-

hilates its forecasting potential (Stock and Watson, 2008). Closely related, some have stipulated

the PC is nonlinear (Dolado et al., 2005; Doser et al., 2017; Lindé and Trabandt, 2019; Mineyama,

2020). If that were to be true, this should be exploitable. Lastly, an adjacent point of view, which

became increasing popular following the Great Recession, is that the PC has irreversibly flat-

tened to the point of predictive desuetude (Blanchard et al., 2015; Blanchard, 2016; Del Negro

et al., 2020). Unlike the first two propositions, this one is, by nature, terminal.

Of course, all those explanations amount to hypotheses on the nature of γ1,t’s time variation,

of which MRF provides a very flexible account. It is worth emphasizing that MRF is estimated

up to 2007Q2, unlike many of the above models explaining the "missing disinflation" after ob-

serving that it took place.44 The variable importance measures reported in Figure 24 showcase a

"consensus" subset of variables that matters for inflation time variation. Three popular ones are

the trend, MAF of building permits and MAF of housing starts. The leading role for the trend

suggests that exogenous time variation is important to explain inflation – to no one’s surprise

(Cogley and Sargent, 2001). Studying βt-specific VI’s suggest that this is mostly a feature of the

intercept and persistence.

Figures 9, 25a and 25b allow to re-conciliate PC forecasting evidence. For instance, a visible

PC death zone spans all of the 90s, which constitutes most of the sample used in Atkeson et al.

(2001).45 It also includes the post-2008 period, which motivated Blanchard et al. (2015)’s inquiry.

Most interestingly, for the latter era, γ1,t is predicted to head toward 0 out-of-sample. To clarify,

the parameter is driven by post-2008 data, but the structure itself (F ) is not re-evaluated past the

dotted line.

By looking at predictive performance results ex-post, Stock and Watson (2008) report that

Phillips’ curve forecasts usually outperform univariate benchmarks around turning points, but

suffer a reversal of fortune when the output/unemployment gap is close to 0. They note that the

finding "cannot yet be used to improve forecasts" because their gap relies on a two-sided filter.

More recently, Kotchoni et al. (2019) reinforce this view by showing an ARMA(1,1) is triumphant

for inflation except in recessionary periods, where a data-rich environment can be helpful. But

to capitalize on this, one needs a recession/expansion forecast. MRF recognize this potential

and relies on leading indicators of the housing market to activate γ1,t in a timely manner. This

is particularly evident from looking at γ1,t’s VI measure in Figure 24 and its resulting GTVP

44Indeed, they do so either by fitting the post-2008 data directly, or by choosing a specification (or building a
theoretical model) directly inspired by the experience of the Great Recession.

45The decade-long wedge between the OLS estimate and GTVP in Figure 25b nicely explains PC failures.
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(a) γINF,h=1
1,t : Surrogate Model Replication (b) γINF,h=1

1,t : Corresponding Tree

(c) γINF,h=12
1,t : Surrogate Model Replication (d) γINF,h=12

1,t : Corresponding Tree

Figure 9: Surrogate βt,k Trees for Inflation. Shade is 68% credible region. Pink shading is NBER recessions.

in Figure 9. Overall, we see that the relationship between inflation and economic activity is

episodic, as conjectured by Stock and Watson (2008), and often prevails before recessions (but

not all). Figure 9 proposes a clear-cut answer: inflation responds to the real activity factor when

the housing market is booming.

For a long time, housing sector indicators have been known as predictors of future economic

activity (Stock and Watson, 1998a; Leamer, 2007). However, when it comes to forecasting infla-

tion itself, including leading indicators (like permits) does not remedy Phillips’ curve forecasts

failures (Stock and Watson, 2007). FA-ARRF differs by not using housing permits/starts as a

replacement and/or additional output gap proxy. Rather, its role is to increase the curvature

when the time is right. As mentioned above, one explanation is that housing starts and permits
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are proxying for future economic activity, resolving the conundrum posed by Stock and Watson

(2008). Overall, this implies a PC which would be highly nonlinear in real activity, as further in-

quired in section 5.4. Another hypothesis is that MRF discovers – through aggregate data – how

to leverage Stock and Watson (2019)’s insights that some components of inflation are much more

cyclically sensitive than others. Stock and Watson (2019) show that the most cyclical component

of inflation is housing, followed closely by food components. Accordingly, MRF activating γ1,t

with building permits and housing starts is the algorithm’s way of predicting when more cycli-

cally sensitive components take the front stage – and by doing so, revive the Philipps’ curve. In

sum, nonlinearities would be a consequence of aggregation.

The predictive PC studied here differs in many aspects from those studied, for instance,

in Blanchard et al. (2015). Importantly, F1 summarizes mostly variables in first differences (or

growth rates). A typical gap measure, being a deviation from a trend, will be much more per-

sistent. Also, it remains negative for many years following a downturn. In contrast, F1, which is

strongly correlated with UR change, will go back up as soon as UR stops growing. To validate

current insights and obtain new ones, I now study a prototypical Phillips’ Curve.

5.4 The Phillips’ Curve: Not Dead Yet?

The behavior of inflation since the Great Recession – starting with the missing disinflation and

followed by "missing inflation" of recent years – sparked renewed interest in the Phillips curve.

Much attention has been given to its hypothesized flattening (Blanchard et al., 2015; Galí and

Gambetti, 2019; Del Negro et al., 2020). This body of work supports the view that the PC coef-

ficient (either reduced-form or semi-structural) has substantially declined over the last decades.

The focus on slow structural change is operationalized by the modeling strategy – either ran-

dom walk TVPs or sample splitting at a specific date. Coibion and Gorodnichenko (2015) show

less worry about PC’s health. They rationalize post-2008 inflation with a simple OLS PC where

expectations are based on consumer survey data rather than lags or professional forecasters.

Del Negro et al. (2015) demonstrate that a standard DSGE (which encompasses a structural

New Keynesian PC) is not baffled by post-2008 inflation since it relies on model-based forward-

looking expectations of future marginal cost. More recently, Lindé and Trabandt (2019) and

Mineyama (2020) articulate theories supporting a nonlinear specification for the reduced-form

PC, which could also account for the inflation puzzles punctuating the last 12 years. Given this

background and forecasting results reported earlier, a traditional PC must be a fertile ground for

MRF-based detective work.

I contribute to the literature by fitting an MRF which linear part corresponds to an expectations-

augmented Phillips’ curve. Xt is inspired by what Blanchard et al. (2015) (henceforth BCS) con-
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siders:

πt = θtπ̂
LR
t + (1 − θt)π̂

SR
t + φtu

GAP
t + ψtπ

IMP
t + ǫt, (4)

where πt stands for CPI inflation, π̂LR
t and π̂SR

t respectively for long-run and short-run inflation

expectations. uGAP
t represents the (negative) unemployment gap and π IMP

t is import prices in-

flation. I translate this to the MRF framework by making µt = θtπ̂
LR
t the time-varying intercept,

letting βt,1 = 1 − θt and by obtaining uGAP
t by means of Hodrick-Prescott filtering.46 As in BCS,

π̂SR
t is the average inflation over the last four quarters. Hence, the estimated equation

πt = µt + β1,tπ̂
SR
t + β2,tu

GAP
t + β3,tπ

IMP
t + εt (5)

does not impose the constraint implied by θt in equation (4). However, estimation results will

desirably have β1,t ∈ [0, 1] at almost any point in time. St is the same as that considered in the

forecasting section. The data set runs up to 2019Q4.

Figure 10: The gray bands are the 68% and 90% credible regions. Pink shading corresponds to NBER recessions.

Figure 10 reports GTVPs of interest: the weight on short-run expectations and the output

gap coefficient. Additionally, it contains traditional TVP estimates as means of comparison. The

latter convey the usual wisdom: inflation expectations slowly start to be more anchored from

the mid 1980s. Around the same time, the unemployment/inflation trade-off begins its slow

collapse. The updated data shows that the TVP-based Phillips’ curve has further flattened to

plain 0 in the last decade.

For β1,t, the weight on short-run expectations, both methods agree that it has been decreasing

steadily after the 1983 recession. But GTVPs highlight an additional pattern for the importance

46Specifically, both this gap and that of BCS get out of negative territory around 2014.
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of π̂SR
t : it tends to increase during economic expansions, collapse during recessions then start

increasing again until the next downturn. Note that the phenomenon is also observed in Figure

7b for the simpler ARRF on quarterly inflation. The decrease in the coefficient (usually of about

0.25) is observed for every recession and usually last for some additional quarters after the end of

it. The linear rise in the coefficient occurs for all expansions except those preceding the early 90s

and 2000s recessions, where the pattern is punctuated with additional peaks and troughs. The

increased importance of short-run expectations with the age of the expansion is also observed

for recent expansionary periods. Hence, the phenomenon is not merely a matter of the 70s and

80s recessions being preceded by a sharp acceleration of inflation.

From a more statistical point a view, the sharp decline in β1,t following every recession sug-

gests that in the aftermath of an important downward shock, the long-run inflation expectation

is a more reliable predictor as it is minimally affected by recent events. As the expansion slowly

progress (and recessionary data points get out of the short-run average), π̂SR
t becomes a more up

to date and reliable barometer of future inflation conditions. This narrative is corroborated by

variable importance (Figure 27) for β1,t, which highlights the importance of the trend, but also

recent lags of inflation.

When it comes to the low-frequency movement of the unemployment gap coefficient, both

methods agree about a significant decline starting from the 80s. However, GTVPs uncover addi-

tional heterogeneity. First and most strikingly, β2,t gets very close to 0 following every recession.

This suggests a nonlinear Philipps’ curve where inflation responds strongly to a very positive

uGAP
t but not so much to a negative one. Second, the 70s and early 80s are characterized as a

series of peaks (preceding the first three recessions of the sample) rather than a sustained high

coefficient. Traditional TVPs, by excessive time-smoothing, dissimulate the effects of inflation-

ary spirals on β2,t. Such pre-recession accelerations still occur during the Great Moderation but

in a much milder way.

Third, VI measures (in Figure 27) confirm the importance of activity indicators (like Total Ca-

pacity Utilization (TCU)) in driving β2,t itself. The correlation between β2,t and TCU is 0.81, and

the correspondence between the two variables is striking in Figure 11. Many notable increases

in β2,t are nicely matched (between the two 70s recessions and before 2008). Of course, this sim-

ple characterization remains imperfect since it misses some highs (like the end of the 70s) and

predicts a higher β2,t in the years following the 2008-2009 recession. Generally, given the strong

co-cyclicality between TCU and uGAP
t , this is evidence of a convex PC.

The collapse of β2,t following recessions is not unique to 2008: it happened following every

recession since 1960. As a result, inflation will rise when the economy is running well above

its potential, but much more timidly will it go down from economic slack. Recently, Lindé and

Trabandt (2019) have shown that such a phenomenon can be rationalized by a New Keynesian
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Figure 11: "What Goes Around Comes Around": Capacity Utilization is substantially correlated with the inflation-
unemployment trade-off. The gray band is the 68% credible region. Pink shading corresponds to NBER recessions.

DSGE model. Indeed, by allowing for additional strategic complementarity in firms price- and

wage-setting behavior and solving the nonlinear model (rather than considering the linear ap-

proximation around the steady state), the authors obtain a state-dependent PC which becomes

very flat during large downturns. This can explain both the small coefficient during recessions

and its subsequent timid increase. Theoretically, convexity can also emerge from downward

wage rigidities (Mineyama, 2020), but its empirical plausibility for the post-2008 era has been

contested (Coibion and Gorodnichenko, 2015).

This pattern remains when adding controls in the linear part for supply shocks and monetary

policy shocks. Those are the usual confounding factors suspected of blurring the relationship

by introducing a positive correlation between unemployment and inflation.47 The economic

suspicion particular to this application is that omitting them could create a downward bias in β2,t

that only occurs locally, generating the cyclical pattern. As it turns out, controls make cyclicality

even more obvious in Figure 28, especially for the later part of the sample.48 However, the

overall strength of the coefficient is smaller (especially for the 70s).

Many hypotheses can be accommodated by a model estimated on two disjoint samples, like

in Del Negro et al. (2020). Much fewer of them are compatible with the richer β2,t path extracted

by MRF. This is important: learning the type of nonlinearity, rather than partially imposing it,

helps in discriminating economic suppositions. Figure 11 and recent theoretical developments

47While the time-varying constant can go a long way at controlling for such factors – being a RF in itself, including
them in the linear part makes them "stand out" as everything going through the intercept is inevitably heavily
regularized.

48Results being similar for both curves is reminiscent of Galí and Gambetti (2019) who report little differences
between paths of reduced-form and semi-structural wage PCs (although they focus on long-run change).
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both suggest that much of the PC’s decline is attributable to upward nonlinearities being less

solicited in the last 3 decades. This is in accord with the policy hypothesis: since Paul Volker’s

chairmanship the monetary authority has responded much more aggressively to inflationary

pressures, limiting the spirals that gave rise to high β2,t’s in the 70s. Two conclusions emerge

from this observation. First, exogenous change cannot so simply be ruled out. Second, knowing

what were MRF beliefs about PC nonlinearities at different points in time could be enlightening.

5.4.1 Conditional Coefficient Forecasting

β2,t’s lows are getting lower, and longer. Should we have known? Much of the recent work on

PC is directly inspired by Great Recession aftermath, and aims at explaining it. Whether it is

theoretical or empirical work, much of it could be overfitting: a model can replicate one or two

facts it is trained to replicate, but fails to generalize. That is, even if models are tested out-of-

sample (which is itself not so often the case in the literature), the choice of nonlinearity itself is

often determined in attempt to match the OOS. Beyond the linear part being a PC, MRF does

not assume much — and its nonlinearities are certainly not "personalized" to the recent inflation

experience. Thus, it is interesting to ask: what was MRF "thinking" about β2,t in 2007? in 1995?

Did it know something we did not, or did it learn (as most economists) of PC’s collapse from the

post-2008 experience? I conduct a β2,t dynamic learning exercise to find out.

To make this operational, MRF is estimated up to 1995, 2007 and 2019, and GTVPs are pro-

jected out-of-sample from those dates (when applicable). To be clear, β̂2,t|1995 = F̂1995(St) means

the coefficient predictive structure is last estimated in 1995. Coefficients keep moving out-of-

sample because St does. F̂1995(St) and F̂2007(St) will differ for two main reasons. The first is

estimation error – both in terms of precision and re-evaluating which nonlinearity seems more

appropriate.49 The second is structural change, perhaps completely exogenous or triggered by

policy interventions.

Much can be learned from Figure 12. First, GTVPs are all very alike for the pre-1995 period,

suggesting little was observed post-1995 that made MRF change its reading of the past. Similarly,

the green and the magenta line, which both share the 1995-2007 period within their training sets,

are close to one another. Overall, this indicates that OOS difference between paths are very

unlikely due to a better re-estimation and/or a completely new choice of F .

Second, unlike what we have seen for the unemployment equation (Figure 5), there are im-

portant disparities between the ex-ante and the ex-post paths out-of-sample. Thus, one can right-

fully hypothesize that structural change got in the way, making F̂1995’s attempt of replicating

the strong nonlinearities of the 70s into the 2000s go wildly off course. An analogous (yet far

less noticeable gap) punctuates the post-2007 period. This suggests that while β2,t was expected

49The second part has the flavor of model selection "error".
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Figure 12: Conditional β2,t Forecasting. The gray band is the 68% credible region for GTVPs estimated up to
2019Q4. Pink shading corresponds to NBER recessions. For enhanced visibility, GTVPs are smoothed with 1-year
moving average. The vertical dotted lines are the end of the training samples.

to fall marginally following the crisis and stay low thereafter (according to F̂2007), it was not

expected to go that low. Indeed, only F̂2019 hits 0 and stays in its vicinity.

Of course, by design, exogenous structural change cannot be captured out-of-sample – with

the results that we know (F̂1995). This dismal predicament does not apply to cyclical behavior:

it has been forecastable at least since 1995. Indeed, F̂1995 propose a β2,t for 2000 and 2008 that

is very similar to that of 70s inflation spirals. Moreover, β̂2,t|1995’s collapse following 2008 is of

a magnitude only seen during Arthur Burns’ days. Hence, a much weaker PC following large

downturns is hardly new. However, what β̂2,t|2007 and β̂2,t|2019 tell us is that the overall amplitude

(and level) of those variations has evolved exogenously, forcing MRF to update F repeatedly.

This exercise may rightfully seem exotic, with no obvious analog in the literature. The simple

explanation is that traditional time variations only give "trivial" parameter forecasts by construc-

tion, and there is no clear "learning" process to analyze. For example, the "forecasted" random

walk TVP would be a straight line over the whole OOS. Doing so with a threshold model would

only inform us of the increasing precision of estimation as sample size grows – i.e., the model

itself cannot be re-evaluated. Unlike traditional nonlinear methods, MRF provides non-trivial βt

paths out-of-sample — and discovers exogenous structural change instead of imposing it.

6 Conclusion

I proposed a new time series model that (i) expands multiple nonlinear time series models, (ii)

adapts Random Forest for macro forecasting and (iii) can be interpreted as Generalized Time-
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Varying Parameters. On the empirical front, the methodology provides substantial empirical

gains over RF and competing non-linear time series models. The resulting Generalized TVPs

have a very distinct behavior vis-à-vis standard random walk parameters. For instance, they

adapt nicely to regime-switching behavior that seems pervasive for unemployment – while not

neglecting potential long-run change. This finding is facilitated by the fact that GTVPs lend

themselves much more easily to interpretation than either standard RF or random-walk TVPs.

Indeed, rather than trying to open the back box of an opaque conditional mean function (like

one would with plain RF), MRFs can be compartmentalized in different components of the small

macro model. Furthermore, GTVPs can be visualized with standard time series plots and credi-

ble intervals are provided by a variant of the Bayesian Bootstrap.

When looking at Phillips’ curves in general, MRF finds both structural change in the persis-

tence and regime-dependent behavior in the economic activity/inflation trade-off. In particular,

a recurrent theme across all specifications is that the slowly decaying curve is also much steeper

when the economy is overheating – in line with the convexity/nonlinearity hypothesis. Hence,

MRF can be of great help sorting out what is plausible and what is not when it comes to macroe-

conomic equations with a history of controversy. Since there is no shortage of those, MRF holds

many possibilities for future research.
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A Appendix

A.1 More on Engineering St

To appreciate the point that various factors and the raw data can both be included together, let us

put RF aside for a moment, and look at a high-dimensional linear regression problem. Suppose

we define St = [Xt Ft] and by construction the factors are some linear combination of original

features (Ft = XtR).50 We can estimate

yt+1 = Xtβ + XtRγ + ut (A.1)

using LASSO. Of course, this would not run with OLS because of perfect collinearity, which is

the standard motivation for not mixing dense and sparse approaches. By Frisch-Waugh-Lowell

theorem and the factor model

Xt = ΛFt + et,

(A.1) above is equivalent to

yt+1 = etβ + Ftγ + ut.

At first sight, this has more parameters than either the dense or sparse approach. However, with

some adequate penalization of β and γ, the model can balance a proper mix of dense and sparse.

For instance, activating some β’s "corrects" the overall prediction when the factor model repre-

sentation is too restrictive for the effect of a specific regressor Xk on yt+1.51 This representation

has been studied in Hahn et al. (2013) and Hansen and Liao (2019) to enhance hard-thresholding

methods’ performance (like LASSO) in the presence of highly correlated regressors. Coming

back to RF, this means its strong regularization/selection allows for both the original data and

its rotation to be included in St. This also suggests it is relatively costless to explore alternative

rotations of Xt.

A.2 Block Bayesian Bootstrap Details

BBB is a conceptual workaround to reconcile time series data with multinomial sampling. For

completeness, I briefly review the standard Bayesian Bootstrap. Let all the available data be

cast in the matrix Zt = [yt Xt St]. Z is considered as a discrete iid random variable with T

support points. Define Nt = ∑
T
τ=1 I (Zτ = zt), which is the number of occurrences of zt in the

sample. The goal is to conduct inference on the data weight vector θ1:T, and then obtain credible

50Note that in this section only, Xt denotes generic raw regressors rather than MRF’s linear part. This switch
allows for the use of familiar-looking notation.

51That problem has been documented in Bai and Ng (2008) and others.
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regions for the posterior functional βt = T (θ1:T). To do so, we need to characterize the posterior

distribution of vector θ (stripped of its subscript for readability)

π(θ|z) =
f (z|θ)π(θ)

∫

f (z|θ)π(θ)dθ
.

Conditional on θ, the likelihood of the data is multinomial. The prior is Dirichlet. Since Dirichlet

is the conjugate prior of the multinomial distribution, the posterior is also Dirichlet. That is, it

can be shown that combining the likelihood

f (z|θ) =
N!

N1! · · · NT!

T

∏
t=1

θNt
t with prior distribution π(θ) =

1
B(α1:T)

T

∏
t=1

θNt+αt−1
t

gives rise to the posterior distribution

π(θ|z) =
1

B(ᾱ1:T)

T

∏
t=1

θNt+αt−1
t .

where ᾱt = αt + Nt and B(ᾱ1:T) = ∏
T
t=1 Γ(ᾱt)

Γ(∑
T
t=1 ᾱt)

. Using the uninformative (and improper) prior

αt = 0 ∀t, we can simulate draws from the (proper) posterior using θt ∼ Exp(1). The object of

scientific interest is typically not θ per se but rather a functional of it. In Taddy et al. (2015), the

functional of interest is a tree and inference is obtained by computing T (θ1:T) for each θ1:T draw.

BBB considers a different Zt so that it is plausibly iid when used with stationary time series data.

The derivations above can be carried by replacing t by b and T by B. Practically, this implies

drawing θb ∼ Exp(1) which means observations within the same block (b : b̄) share the same

weight. As an alternative to this BBB that would also be valid under dependent data, Cirillo and

Muliere (2013) provide a more sophisticated urn-based approach with theoretical guarantees. It

turns out their approach contains the well-known non-overlapping block bootstrap as a special

case, which the above is only its Bayesian rendition.

A.3 More on Surrogate βt Trees

The approach described in section 5.3 belongs to a family of methods usually referred to as "sur-

rogate models" (Molnar, 2019). Attempting to fit the whole conditional mean obtained from a

black-box algorithm using a more transparent model is a global surrogate. An obvious critique

of this approach is that if the complicated model justifies its cost in interpretability with its pre-

dicting gains, it is hard to believe a simple model can reliably recreate its predictions. Conversely,

if the surrogate model is quite successful, this casts some doubts about the relevance of the black

box itself. In this line of work, a more promising avenue is a local surrogates model as proposed
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in Ribeiro et al. (2016), which fits interpretable models locally. By following Granger (2008)’s in-

sights, we already have this: by looking at the βt paths directly, we effectively have a local model

– in time. The purpose of surrogate models is to learn about the model, not the data. The former

is much easier in MRF than in standard RF since the vector βt fully characterizes the prediction

at a particular point in time.52 Moreover, the coefficients are attained to predictors that can have

themselves a specific economic meaning. Considering this and the earlier discussion of section

2.1, it is natural in a macro time series context to fit surrogate models to time-varying parameters

themselves – a blatant divide-and-conquer strategy.

A.3.1 About VIOOB, VIOOS and VIβ

I now explain the motivation and mechanics behind the different VI measurements. The first

measure, VIOOB, is the standard out-of-bag (hence OOB) VI permutation measure widely used

in RF applications (Wei et al., 2015). It consists of randomly permuting one feature Sj and com-

paring predictive accuracy to the full model on observations that were not used to fit the tree.53

This pseudo evaluation set is convenient because it is a direct byproduct of the construction

of the forest. Under a well-specified model that includes enough lags of yt, autocorrelation of

residuals will not be an issue. This condition is likely to be met here since the analysis focuses

on results for h = 1. 54 VIOOS considers a different testing set more natural for time series data:

the real OOS, which in this section spans from 2007q2 to the end of 2014. By construction, this

measure focuses on finding variables which contribution paid off during a specific forecasting

experiment, rather than throughout the whole sample. This is not bad per se but is a different

concept that can be of independent interest. Finally, both VIOOB and VIOOS focus on overall fit.

VIβ implements the same idea as VIOOB but is calculated using a different loss function. That is,

VIβk,j
reports a measure of how much the path of βk is altered (out-of-bag) when variable Sj is

randomly permuted in the forest part. Finally, I use the various VI measurements as devices to

narrow down the set of predictors for the construction of intuitive trees.

I restrict the number of considered variables (for the next step) to be 20 for each VI criteria.

When VI suggest that a parsimonious set of variables matter, it is very rarely more than 3 or 4

variables. Thus, restricting it to 20 is a constraint that only binds if all variables contribute, but

52More generally, any partially linear model in the spirit of MRF has a potential for local surrogate analysis along
the linear regression space rather than the observations line.

53This is thought as the equivalent for a black-box model to setting a specific coefficient to 0 in a linear regression
and then comparing fits. However, VI as implemented here (and in most applications) does not re-estimate the
model after dropping Sj. This differs from a t-test since it is well known that the latter is equivalent to comparing
two R2’s – the original one and that of a re-estimated model, under the constraint.

54Notwithstanding, at longer horizons, VIOOB could paint a distorted picture in the presence of autocorrelation –
the same way K-fold cross validation can be inconsistent for time series data (Bergmeir et al., 2018). This worry can
be alleviated by using a block approach like in section 2.7.
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marginally, in the spirit of a Ridge regression (Friedman et al., 2001). When it comes to that, the

cut-off is simply the natural reflection of a trade-off between interpretability and fit.

A.4 On Tuning Parameters

The bulk of the discussion on the algorithm’s specifics is deferred to the R package. None of

the RFs reported in the text were tuned. This is not heresy, as minuscule performance gains

from doing so (like optimizing mtry) are the norm rather than the exception. Additionally, re-

straining the terminal nodes size can only alter performance very mildly and it is now clear

why (Goulet Coulombe, 2020b). Nonetheless, reviewing some of those untuned tuning parame-

ters can be insightful about MRFs inner workings. "Algorithm" 1 below summarizes when and

where those enter the MRF procedure.

• RWR: stands for Random Walk Regularization strength as discussed in 2.3. It is the ζ in

equation (2).

• RL: stands for Ridge Lambda (λ) in equation (1). Prior means are OLS estimates.

• Minimal Node Size: Minimal parent leaf size to consider a new split. Set to 10 for

quarterly data and 15 for monthly.

• MLF: stands for Minimum Leaf Fraction. It is the parameter in MRF that has a role comple-

mentary to that of minimum node size. The so-called "fraction" is the ratio of parameters

in the linear part to that of observations in any node (which includes most importantly the

terminal ones). Here is an example. Set MLF = 2, the linear part has 3 parameters, and

we are trying to split a subset of 15 observations. This setting implies that any split that

results in having less than 6 observations in the children note will not be considered. This

specific setting ensures that the ratio of parameters to observations never exceeds 1/2 in any

node. This ensure stability, especially if the two aforementioned HPs are set to 0. However,

when RWR and RL are active, it is possible to consider MLF = 1 or even lower. The extra

regularization allows in the latter case to have base regressions that have parameters/ob-

servations ratio exceeding 1 (high-dimensional setting). This is desirable with quarterly

data because setting MLF > 2 or higher seriously restricts the potential depth of the trees.

• mtry: how many Sj’s do we consider as potential "splitter" at each split? It is easier to

think about it as a fraction of the total number of predictors. For regression settings, the

suggested value is 1/3. The lower it gets, the more random tree generation gets, and bet-

ter diversification may ensue. Moreover, mtry directly impacts computational burden.

It is often found, in a macro context, that lowering mtry to 0.2 does not alter perfor-

mance noticeably, while reducing appreciably computations. In fact, running RF-MAF
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with mtry∈ {0.1, 0.2, 0.33, 0.5} delivers nearly identical performance for all variable/hori-

zon pairs of the quarterly exercise. This is likely attributable to macro data having a factor

structure. If Sj is "not available" for a split when it would in fact maximize fit locally, there

is another strongly correlated Sj′ ready for the task. For instance, if the unemployment rate

is discarded by mtry, then there are more than 20 other labor indicators that can possibly

substitute for it. If those 20 variables are all a noisy representation of the same latent vari-

able the model wants to split on, then the probability of having none to split with at a given

point is
(

1 − mtry

#regressors

)20
≈ 0.

• Trend Push: Some minorities may end up being underrepresented as a result of mtry’s

discriminating action. While there are 20+ labor indicators in the data base, there is only

one trend. Since exogenous change should most certainly not be underrepresented, its

"personalized" probability of inclusion can be pushed beyond what mtry suggests.

• Subsampling Rate: is set at 75%.

A scaled down quarterly forecasting exercise was conducted to see whether tuning any of

those could help. Precisely, horizons 1, 2, and 4 quarters were considered and models (ARRF,FA-

ARRF,VARRF) were estimated once at the beginning of the OOS period (2002). Tuning pa-

rameters were optimized targeting 1998-2002 data as an artificial test set. Possible values were

RWR∈ {0, 0.5, 0.95}, RL∈ {0.1, 0.5}, mtry∈ {0.2, 0.33, 0.5} and min.node.size∈ {10, 40}. It is

found that results are largely invariant to pre-optimized HPs. As mentioned earlier, what mat-

ters most in the linear part. It is observed that optimizing tuning parameters can help reduce

marginally RMSEs of MRFs that were sometimes struggling (like VARRF). Results are available

upon request.

A.5 Additional Simulations Results

DGP 4: SETAR. In this second SETAR example

yt = Xtβt + ǫt, ǫt ∼ N(0, 0.52)

βt =







[2 0.8 − 0.2], if yt−1 ≥ 1

[0 0.4 − 0.2], otherwise,

AR models are doing badly by not capturing the change in mean and dynamics. It is note-

worthy that in this DGP, predictive power quickly vanishes after h = 1, which is why we ob-

serve little performance heterogeneity at longer horizons in Figure 13a: those are dominated by

the unshrinkable prediction error. Specifically tailored for this class of DGPs, the two SETARs
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Algorithm 1 How the key tuning parameters enter MRF, and other practical aspects

1: Draw blocks of some size (8 for quarterly, 24 monthly), that makes for Subsampling Rate% of the
sample. To simply get the mean prediction, 100 trees are usually more than enough. To get credible
regions to stabilize, 200-300 trees are typically needed.

2: • For each subsample: run (2) recursively on that sample given λ and ζ values until each (poten-
tial) parent nodes are smaller than Minimal Node Size.

• A total of mtry predictors are considered at each splitting step J − is randomly picked out of
J . Those probabilities are all 1/dim(J ) by default. Trend Push pushes that of the trend further
if judged appropriate for a given data set.

• When evaluating potential splits, discard those that would not meet MLF’s requirements on
resulting children nodes.

• This outputs one tree structure T .

3: When inputted with new observations of Xt and St, each tree produces a forecast. MRF forecast is the
mean of the those.

4: Same goes for βt: each tree predicts its own βt out-of-sample and the posterior mean is the average
of all those.

5: In-sample βt’s need an extra step: only draws that did not use observation t to construct the tree (that
is, for which t was left out of the subsample) are used to characterize the distribution of βt.

are offering the best performance. A less trivial observation is that MRF and RF, while much

more general, perform only marginally worse than SETARs. The tie between MRF and RF is

attributable the importance of the switching constant in the current DGP, which both models

allow for.

DGP 5: AR(2) WITH A BREAK. Results for

yt = Xtβt + ǫt, ǫt ∼ N(0, 0.32)

βt =







[0 0.7 − 0.35], if t < T/2

[0.15 0.6 0], otherwise

are reported in Figure 13b. In this setup, RW-AR is expected to have an edge, with the estimation

window excluding pre-break data. At horizon 1, both RW-AR and ARRF are the best model,

beating the robust AR by a thin margin. For h > 1, ARRF emerges as the best model at both 150

and 300 sample sizes. Naturally, RW-AR is always close behind.55 As expected, the two models

are better than the remaining alternatives by allowing for exogenous structural change (which

SETARs and AR do not) and explicitly modeling the autoregressive part (which RF does not).

55Although not reported here, I considered a simple linear model where I search for a single break (in time) and
use the data after the break for forecasting. This option does as well as ARRF for this particular DGP.
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(a) DGP is SETAR.

(b) DGP is AR(2) with structural break.

(c) DGP is SETAR with structural break.

Figure 13: Displayed are increases in relative RMSE with respect to the oracle.

59



DGP 6: SETAR WITH A STRUCTURAL BREAK. This is slight complications of DGP 1. Again,

SETARs are expected to fail because they are not designed to catch breaks. RW-AR is also ex-

pected to fail because it does not model switching. RF is general enough, but is anticipated to be

inefficient. All these heuristics for

DGP 4 =







DGP 2, if t < T/2

DGP 3, otherwise

are verified in Figure 13c: MRF is the better model followed closely by RW-AR and RF for short

horizons. With 300 observations, the lead of ARRF, as well as the second position of RF, are both

strengthened. At longer horizons, all models perform poorly (including the oracle) due to the

fundamental unpredictability of the law of motion for βt. For these horizons, misspecification

only plays a minor role in total forecast error variance, explaining the small and homogeneous

decrease in performance with respect to the oracle.

A.6 Monthly Forecasting Results

I run a similar exercise as in Goulet Coulombe et al. (2019) which is very close to what has been

precedently conducted for quarterly data. FRED-MD is now used. It contains 134 monthly US

macroeconomic and financial indicators observed from 1960M01 (McCracken and Ng, 2016). To

match the experimental design of Goulet Coulombe et al. (2019) for ML methods, Industrial

Production (IP) replaces GDP and IR is dropped. The horizons of interest are h = 1, 3, 9, 12, 24

months. The forecast target is the average growth rate ∑
h
h′ yv

t+h′/h which is much less noisy than the

monthly growth rate. For example, for inflation 24 months ahead, I target the average inflation

rate over the next two years – rather than the monthly inflation rate in 2 years. The OOS period

is the same as before.

In Figure 17, VARRF is now doing much better on average, ranking first in terms of mean

improvement over AR. ARRF still provides great insurance against doing worse than a plain

AR counterpart (here AR(12)).56 FA-ARRF remains very competitive. The models that do not

have the MAFs (benchmarks) are clearly outperformed by the rest that do. This unsurprisingly

indicates that lag polynomial compression can be of even greater use at the monthly frequency.

Table 5 reports specific RMSEv,h,m/RMSEv,h,AR’s with Diebold-Mariano tests. Broadly, they

show that (i) MAFs are without any doubt the major improvement for the first three variables (IP,

UR, SPREAD), (ii) simpler approaches like RF-MAF and AR+RF do well (except for INF) (iii) all

MRFs do very well for inflation. Particularly, for (iii), ARRF and Tiny ARRF provide significant

gains of 33% and 45% over the benchmark at h = 12 and h = 24, respectively. It is clear from

56This is also true for the more parsimonious AR, see Table 5.
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(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

(e) DGP 5 (f) DGP 6

Figure 14: Investigation of the consequences of Xt’s misspecification, as exemplified by "Bad ARRF". Instead of
the first two lags of yt, Xt is replaced by randomly generated iid (normal) variables. Total number of simulations is
50, and the total number of squared errors is thus 2000.
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(a) DGP 4

(b) DGP 5

(c) DGP 6

Figure 15: The grey bands are the 68% and 90% credible region. After the blue line is the hold-out sample. Green
line is the posterior mean and orange is the truth. The plots include only the first 400 observations.
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Figure 16: The distribution of RMSE dis-improvements with respect to the oracle’s forecast for 4 models: OLS,
Rolling-Window OLS, plain RF, MRF. 50 simulations of 750 OOS forecasts each.

Figure 17: The distribution of RMSEv,h,m/RMSEv,h,AR for monthly data. The star is the mean and the triangle is
the median.

this evidence, and that of the quarterly section, that forcing time-invariant inflation dynamics is

costly in terms of RMSPE. GTVPs will confirm that, in accord with classic evidence on the matter
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(Cogley and Sargent, 2001).

Gains for INF are miles ahead from the usual competition. Table 5 includes forecasts inspired

by the contribution of Atkeson et al. (2001): 1, h and 12 months moving averages are consid-

ered (where h is the targeted horizon). As in the original paper, the "AO-12" forecasts prove

remarkably resilient, but are bested with sizable margins at each horizons by ARRF, Tiny ARRF,

and FA-ARRF. For instance, at h = 24, the next best non-MRF forecast delivers 16% gains over

the benchmark AR, whereas the worst MRF provides a gain of 27%. Tiny ARRF supremacy at

longer horizons is sensible given that restricting St emphasizes long-run exogenous change, a

usual suspect for INF.

Another interesting observation emerges from MRFs successes with monthly inflation. FA-

ARRF is often close to the best model, and that, at all horizons. Naturally, this is intriguing

as FA-ARRF can be thought of as a Phillips’ curve forecast, which recurrent failures are well

documented (Atkeson et al., 2001; Stock and Watson, 2007). Moreover, it is reported that FA-AR,

in contrast, does really bad. To sort this out, FA-ARRF’s GTVPs are studied in section 5.3.2.

A.6.1 Non-US Data

Much attention has been paid to the prediction of US economic aggregates. An even greater chal-

lenge is that of forecasting the future state of a small open economy. Such an application is be-

yond the scope of this paper but is considered in Goulet Coulombe et al. (2020b). The study con-

siders the prediction of more than a dozen key economic variables for Canada and Québec using

the large Canadian data base of Fortin-Gagnon et al. (2018). Forecasts from about 50 models and

different averages of them are compared, with ARRF and FA-ARRF among them. MRFs gen-

erate substantial improvements especially at the one-quarter horizon for numerous real activity

variables (Canadian GDP, Québec GDP, industrial production, real investment). In such cases,

ARRF or FA-ARRF provide reductions (with respect to autoregressive benchmark) that are siz-

able and statistically significant, going up to 32% in RMSE. That performance is sometimes miles

ahead from the next best option (among Complete Subset Regression, Factor models, Neural

Networks, Ridge, Lasso, plain RF and different model averagaging schemes). Goulet Coulombe

et al. (2020b)’s results suggest that MRFs forecasting abilities generalize beyond the traditional

exercise of predicting US aggregates.

More recently, Goulet Coulombe et al. (2021) uses MRF (along with a plethora of ML models)

with a newly-built large UK macro data base, and finds that it can provide substantial gains

during the Pandemic Recession. One of the reasons for that is the capacity of MRF to be nonlinear

and extrapolate, which off-the-self tree-based methods (like RF) lack.
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A.7 Additional Figures and Tables

(a) RMSEGDP,h,m/RMSEGDP,h,AR (b) A look at forecasts

Figure 18: GDP results in detail

(a) RMSESPREAD,h,m/RMSESPREAD,h,AR (b) A look at forecasts

Figure 19: SPREAD results in detail
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(a) RMSEINF,h,m/RMSEINF,h,AR (b) A look at forecasts

Figure 20: INF results in detail

Figure 21: GTVPs of the one-quarter ahead GDP forecast. Persistence is defined as φ1,t + φ2,t. The grey bands are
the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard error. The vertical
dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.
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Figure 22: GDP equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs
estimated with a ridge regression as in Goulet Coulombe (2020a) and the parameter volatility is tuned with k-fold
cross-validation. Ex Post TVP means using the full sample for estimation and tuning as opposed to only using
pre-2002 data as for GTVPs. The pale orange region is the OLS coefficient ± one standard error. Pink shading
corresponds to NBER recessions.
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(a) GDP horizon 1

(b) UR horizon 1

Figure 23: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.
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(a) One month ahead inflation forecast

(b) Average inflation over the next 12 months

Figure 24: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.

69



(a) One-month ahead

(b) 12-months ahead

Figure 25: GTVPs of monthly inflation forecast. The grey bands are the 68% and 90% credible regions. The pale
orange region is the OLS coefficient ± one standard error. The vertical dotted line is the end of the training sample.
Pink shading corresponds to NBER recessions.
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(a) UR equation

(b) GDP equation

Figure 26: βt’s obtained with different techniques. TVPs estimated with a ridge regression as in Goulet Coulombe
(2020a) and the parameter volatility λ is tuned with k-fold cross-validation, then divided by 100. This means the
standard deviation of parameters shocks is allowed to be about 10 times higher than what CV recommends. Ex Post
TVP means using the full sample for estimation and tuning as opposed to only using pre-2002 data as for GTVPs.
The pale orange region is the OLS coefficient ± one standard error.
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Figure 27: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.

Figure 28: β3,t in (5) with additional controls for supply and monetary policy shocks. Capacity Utilization is still
substantially correlated with the inflation-unemployment trade-off. The grey band is the 68% credible region. Pink
shading corresponds to NBER recessions.
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Table 4: Main Quarterly Results

FA-AR LASSO-MAF Ridge-MAF RF RF-MAF AR+RF Tiny RF FA-ARRF ARRF Tiny ARRF VARRF SETAR STAR TV-AR
GDP
h=1 1.02 0.96 0.89** 0.94 0.86 0.89 1.03 0.86 0.93 1.04 1.20 1.01 1.03 0.99
h=2 0.96 0.98 0.98 0.99 0.91 0.93 1.01 0.97 0.94** 1.03 0.99 0.97 0.98 1.03
h=4 1.03 0.98 0.99*** 1.00 0.98 0.99 1.03 0.97 0.95 0.98 0.89 0.97*** 0.96*** 0.96
h=6 1.36 0.98 0.98 0.98 1.00 1.00 1.08 1.01 0.97 0.98 1.00 0.98 0.95 0.98
h=8 1.37 1.00 0.99 0.99 0.99 0.96 1.15 1.06 1.00 1.01 1.04*** 1.00 0.97 1.00

UR
h=1 0.83 0.99 0.99 1.00 0.85* 0.84 1.24** 0.72 0.90*** 1.00 1.24 1.18 1.10 1.00
h=2 0.80 0.98 0.92* 0.98 0.85 0.84 1.15* 0.76 0.90 0.96 0.89 1.03 0.97 0.99
h=4 0.88 0.96*** 0.94** 0.96* 0.87* 0.84* 1.37 0.79 0.87 0.92 0.91 1.02 1.01 1.34
h=6 1.18* 0.98 0.98 1.01 0.94 0.90 1.60* 0.89 0.95 0.97 0.95 1.07 1.04 1.14
h=8 1.25 0.98 1.01 1.01 0.95 0.95 1.57 1.01 0.98 0.98 1.04 1.09 1.06 1.11**

SPREAD
h=1 1.28 2.16*** 0.93 0.91 0.95 0.79** 0.96 1.08 0.89** 1.06 0.77** 1.51*** 1.53*** 0.98
h=2 1.13 1.20 0.77 0.66** 0.78 0.72*** 0.93 0.80 0.78** 1.11 0.74** 1.19 1.20 1.04
h=4 0.86 0.95 1.01 0.81 0.69** 0.61** 1.48* 0.66** 0.73** 1.07 0.69** 1.04 1.06 1.30
h=6 1.51 0.80* 1.13 0.98 0.80 0.80 1.43 0.72** 0.82 1.05 0.74* 1.03 1.06 1.19
h=8 1.28 0.76** 0.96 0.92 0.83 0.89 1.36 0.82 0.88 0.99 0.85 1.11 1.14 0.99

INF
h=1 1.01 0.93 0.95 0.98 0.88 1.23 0.90 0.94 0.89 0.87* 0.96 1.05 1.00 0.93
h=2 1.01 0.96 0.92 0.92 0.82 1.00 0.88 0.94 0.86 0.87 0.91 0.86* 0.86 0.89
h=4 1.08 0.92 0.87 0.94 0.85** 0.96 0.86 0.89 0.91* 0.95* 0.87* 0.90* 0.87* 0.91
h=6 1.32 0.96 0.90 1.01 0.88 1.00 0.86 0.91 0.85 0.92** 0.87 0.94 0.89 0.98
h=8 1.21 0.98 1.27 1.44 0.88* 0.94 0.88 0.91* 0.92 0.94 0.91* 0.96 0.92 0.98

HOUST
h=1 1.13 1.04 0.94* 0.92* 1.00 1.01 1.24*** 1.08 0.94** 0.95 1.09 1.01 0.99 1.00
h=2 1.13 0.99 0.94** 0.95* 1.01 1.02 1.10* 1.06 1.00 1.02 0.99 0.94 0.97 1.01
h=4 1.11 0.98** 0.97* 0.97 1.01 1.03 1.12 1.02 1.00 1.02 1.02 0.95 0.96 1.08
h=6 1.40 0.96 0.96 0.96 0.96*** 1.01 1.16 0.97*** 0.99 1.00 0.98 0.95 0.96 0.99
h=8 1.04 0.95 0.95 0.95 0.99 1.02 1.44 0.96 0.99 1.01 1.00 0.95 0.95 1.03

IR
h=1 1.85 1.02 1.55 1.17 1.11 0.97 0.99 1.29 0.94 0.92 1.43 1.39 1.20 0.97
h=2 1.49 0.96 1.01 1.00 0.93 0.98 1.29*** 1.22 0.93 0.92 1.10 1.15 1.11 1.04
h=4 0.96 1.00 1.03 1.03 1.04 0.99 1.39* 0.99 0.97 1.12 0.97 1.08 1.07 1.09
h=6 1.87 0.95 0.99 1.00 0.93 0.93 1.23* 0.98 0.95* 1.07 1.12 1.19 1.14 1.06**
h=8 1.58 0.98 1.02 1.03 0.96 0.96 1.20 1.04 0.96 1.10 0.98 1.25** 1.20** 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano
test is conducted for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%.
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Table 5: Monthly Results

AR4 AO-12 AO-h FAAR RF RF-MAF AR+RF ARRF FA-ARRF Tiny ARRF VARRF
IP
h=1 1.00 1.11* 1.14 0.96 1.03 0.94* 0.97 0.99 0.96 1.02 1.02
h=3 1.02 1.17* 1.02 0.99 1.12 0.98 0.96 1.03 1.01 1.02 1.08
h=9 1.01 1.04 1.03 1.06 1.02 1.06 1.02 1.04 1.10 1.09 1.03
h=12 1.01 1.00 1.00 1.05 0.99 0.97 0.91 0.97 1.05 1.13 0.96
h=24 1.00 0.84 0.84 1.17 0.92 0.86 0.86 0.88 0.95 1.11 0.89

UR
h=1 1.01 1.03 1.09 0.95 0.97 0.87*** 0.95 0.91*** 0.90** 0.98 0.94**
h=3 1.00 1.10 1.05 0.86 1.05 0.81*** 0.92 0.89** 0.82* 1.03 0.89***
h=9 0.99 1.11 1.10 0.92 1.02 0.96 0.91 0.97 0.98 1.16* 0.97
h=12 0.99 1.07 1.07 0.96 0.97 0.96 0.91 0.99 0.94 1.17 0.96
h=24 1.02** 1.02 1.03 1.06 0.91* 0.84 0.81 0.91 0.97 1.28 0.87

SPREAD
h=1 0.99 2.88*** 1.23*** 1.21** 3.52*** 1.07 0.91*** 0.99 0.98 0.96 0.93**
h=3 1.01 1.68*** 1.07 1.25 1.69*** 0.82** 0.81*** 1.06 0.85** 1.00 0.88**
h=9 1.01 1.36 1.27 1.06 0.94 0.73** 0.72** 0.70*** 0.62*** 1.07 0.67***
h=12 1.02 1.28 1.28 1.05 0.80*** 0.66*** 0.60*** 0.68*** 0.65*** 1.07 0.64***
h=24 1.03 1.34* 1.34* 0.96 0.80* 0.70* 0.71* 0.69** 0.63*** 0.90 0.70**

INF
h=1 1.02 1.11* 1.18* 0.99 1.07 1.06* 1.01 0.95 0.96 0.95 0.93**
h=3 1.04 1.02 1.24* 1.04 0.93 0.88 1.05 0.90 0.88 0.90 0.88
h=9 1.07 0.92 1.01 1.16 0.86 0.78 1.15* 0.72 0.82 0.73 0.76
h=12 1.09* 0.91 0.91 1.21 0.88 0.79 1.15* 0.73 0.67 0.67* 0.70
h=24 1.04 0.90** 0.86** 1.35 1.00 1.12 1.12 0.71 0.69 0.55** 0.73

HOUST
h=1 1.00 1.10** 1.35*** 1.07 1.08** 1.02 1.00 1.01 1.02 1.02 1.01
h=3 0.96** 1.06 1.34*** 1.15 1.03 1.07 1.03 1.04 1.03 1.01 1.04
h=9 0.98 1.05 1.12 1.35 0.98 1.02 1.01 1.02 1.14 1.03 1.03
h=12 0.98 1.05 1.05 1.32 0.95 1.00 1.01 1.00 1.12 1.11 1.03
h=24 0.95 1.09 1.07 1.17 0.87 0.94 0.95 1.00 1.15 1.23 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano
test is for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%. "AO-i" means i-months moving average forecasts
à la Atkeson et al. (2001).
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