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Abstract

It is notoriously difficult to build a bad Random Forest (RF). Concurrently, RF blatantly

overfits in-sample without any apparent consequence out-of-sample. Standard arguments,

like the classic bias-variance trade-off or double descent, cannot rationalize this paradox.

I propose a new explanation: bootstrap aggregation and model perturbation as imple-

mented by RF automatically prune a latent "true" tree. More generally, randomized ensem-

bles of greedily optimized learners implicitly perform optimal early stopping out-of-sample.

So there is no need to tune the stopping point. By construction, novel variants of Boosting

and MARS are also eligible for automatic tuning. I empirically demonstrate the property,

with simulated and real data, by reporting that these new completely overfitting ensembles

perform similarly to their tuned counterparts — or better.
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1 Introduction

Random Forest (RF) is a very stubborn benchmark in Machine Learning (ML) applications to tabular

data, especially in economics. It can successfully predict asset prices (Gu et al., 2020), house prices

(Mullainathan and Spiess, 2017), and macroeconomic aggregates (Medeiros et al., 2019; Chen et al.,

2019; Goulet Coulombe et al., 2019). It can infer treatment effect heterogeneity (Athey et al., 2019),

and estimate generalized time-varying parameters (Goulet Coulombe, 2020). The list goes on. But

what makes it so infallible? To answer that question, and eventually understand the reasons behind

RF’s growing list of successful applications, it is better to start with an apparent paradox.

Figure 1: Abalone data set: comparing R2
train and R2

test. First four models hyperparameters are tuned by 5-fold CV. RF
uses default parameters. NN details are in Appendix A.5.

Common statistical wisdom suggests that a non-overfitting supervised learning algorithm

should have approximately the same mean squared error in the training sample as in the test sam-

ple. LASSO, Splines, Boosting, most Neural Networks (NN), and Multivariate Adaptive Regression

Splines (MARS) abide by that principle. But not Random Forest. RF typically has an exceptionally

high in-sample R2 with a much lower, yet competitive, out-of-sample one. This means not only

do the individual trees overfit the training set, but that the ensemble does, too. In contrast, the

algorithms mentioned above usually perform poorly in such conditions. When optimally tuned,

they are expected to deliver neighboring R2
test and R2

train. Figure 1 testifies to all those observations.

This paper is about understanding why RF is excused from obeying the R2
test ≈ R2

train rule — and

showing how to leverage this property for other algorithms.

Providing a theoretical reason to believe RF will not overfit, Breiman (2001) shows that the gen-

eralization error is bounded. That bound goes down as the individual learners’ strength increases

and goes up as correlation between them increases. Despite recent theoretical advances, like prov-

ing consistency (Scornet et al., 2015), it is still unclear why RF works so well on so many data
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sets. It is acknowledged that much of that resilience is attributable to RF providing a flexible non-

linear function approximator that does not overfit. Most importantly, unlike many models of the

nonparametric family, the latter characteristic seems guaranteed even without resorting to careful

hyperparameters tuning. Yet, it is still not clear what mechanism is behind this phenomenon.

If RF – made of fully grown completely overfitting trees – does not overfit out-of-sample, where

does regularization come from? Clearly, increasing λ brings regularization in a ridge regression by

shrinking coefficients toward zero, lowering the individual importance of each predictor. When it

comes to RF, what contortions on the intrinsic model does its regularization entail? An appealing

answer is that bagging smooths hard-thresholding rules (Bühlmann et al., 2002), like increasing the

smoothness parameter of smoothing splines. If that were the whole story, RF, as does smoothing

splines, would yield comparable R2
test and R2

train. Model averaging arguments would also have a

similar implication.1 As clearly displayed in Figure 1, it is not the case — so something else must

be at work.2 The newly proposed answer is: to bag (and perturb) is to prune.

More generally, I argue that randomized greedy optimization performs optimal early stopping.

This is interesting since greedy optimization is often introduced in statistical learning books as an

inevitable (but suboptimal) practical approach in the face of computational adversity (Friedman

et al., 2001). It turns out the necessary evil has unsuspected benefits. A greedy algorithm treats

what has already happened as given and what comes next as if it will never happen. While this

depiction usually means “trouble”, it is the key to this paper’s argument. By recursively fitting

a model and not re-evaluating what came before as the algorithm progresses, the work of early

stages will be immune to subsequent overfitting steps, provided the latter averages out efficiently.

Mechanically, when running CART, the structure at the top cannot be weakened by the bottom’s

doings – the bottom’s existence is not even considered when estimating the top. Moreover, when

faced with only noise left to fit in a terminal node, it is shown that a Perfectly Random Forest’s test set

prediction is the sample mean, which is unbiased and – most importantly – has minimal variance.

In short, it performs pruning.

Fortunately, not only trees are eligible for the enviable property, but also other greedily fit-

ted additive models like Boosting and MARS. Based on this observation, I propose Booging and

MARSquake which – like RF – are ensembles (of bagged and perturbed base learners) that com-

pletely overfit the training sample and yet perform nicely on the test set. Those are later shown to

be promising alternatives to Boosting and MARS (both with a tuned stopping point) on real and

simulated data sets. An R package implements both.

Finally, it is worth contrasting this paper’s explanation with recent "interpolating regime" and

1This renders incomplete (at best) arguments linking RF regularization to that of penalized regression (originally
discussed in Friedman et al. (2001), and more recently Mentch and Zhou (2019)) using results developed for globally
optimized linear models (Elliott et al., 2013; LeJeune et al., 2020).

2Mullainathan and Spiess (2017)’s Table 1 – reporting results from off-the-shelf ML algorithms applied to house price
prediction – is another convenient example where all aspects of the phenomenon are visible.
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"double descent" ideas proposed to explain the success of deep learning (Belkin et al., 2019a,b;

Hastie et al., 2019; Bartlett et al., 2020; Kobak et al., 2020). In a regression context, the interpolating

regime is entered whenever one fits an algorithm of ever-increasing complexity past the complexity

level delivering R2
train = 1.3 The double descent is the astonishing observation that for large-scale

deep neural networks (DNN), the out-of-sample performance starts to increase past the point where

R2
train = 1. Preceded by the typical U-shaped empirical risk curve implied the classical bias–variance

trade-off before R2
train = 1, this makes it for a "double descent" — the first starting from R2

train = 0

and the second from R2
train = 1. Belkin et al. (2019a) evoke that the phenomenon is also present in

RF. However, their construction mistakenly associates the number of trees to be increasing complex-

ity (as in Boosting) whereas it is explicit increased averaging/regularization in RF. Thus, there is no

double descent in RF, but rather a single monotonic descent. Section 2.3 elaborates on this matter.

Wyner et al. (2017) also argue that interpolation may be the key for Boosted Trees and RF success

because local fitting of dissident data points prevents harming the overall prediction function f̂ .

But it is unclear as to why RF is so proficient at it, why "locality" emerges in the first place, and

why estimation variance does not spread. The current paper makes exactly clear how the (greedy)

construction of RF guarantees that overfitting washes away out-of-sample.

This paper is organized as follows. In section 2, I present the main insights and discuss their im-

plications for RF and other greedy algorithms. In section 3, I demonstrate by means of simulations

the implicit optimal early stopping property of RF, Booging and MARSquake. Section 4 applies the

paper’s main ideas to classic regression data sets. Section 5 concludes.

2 Randomized Greedy Optimization & Optimal Early Stopping

It is common to see that RF will have R2
train magnitudes higher than R2

test, a symptom which would

suggest overfitting for many standard algorithms. That is, the traditionally defined in-sample fit-

ted values ŷRF
i = 1/B ∑

B
b=1 ŷtree

i,b where B is the total number of base learners, and corresponding

residuals have nothing to do with what one gets when applying the estimated model to new data,

unless the “true” R2 is really high. While this R2
train curiosity is usually of limited interest per se,

it creates some intriguing headaches from a more traditional statistical perspective. For instance,

any attempt to interpret the intrinsic RF model relies on measurements obtained on pseudo hold-out

samples (called out-of-bag). In contrast, one would not refrain from exploring the structure of MARS’

fitted values or that of a single tree. Indeed, most algorithms, when properly tuned, will produce

comparable R2
test and R2

train. This implies that using the in-sample conditional mean ŷi for any sub-

sequent analysis is perfectly fine. In that way, they behave similarly to any classical nonparametric

estimators where a bandwidth parameter must be chosen to balance estimation flexibility and the

3Interpolation means training data points are effectively interpolated by the fitted function f̂ when R2
train = 1.
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threat of overfitting. Once it is chosen according to CV or some information criteria, in-sample

values provide reliable estimates of the true conditional mean and error term.

I argue that RF’s notably different behavior can be explained by the combination of two ele-

ments: greedy optimization and randomization of the recursive model fitting sequence. By con-

struction, the instability of trees makes the latter an easy task: simply bootstrapping the original

data can generate substantially different predictors (Breiman, 1996). The former, greedy optimiza-

tion, is usually seen as the suboptimal yet inevitable approach when solving for a global solution

is computationally unthinkable. In this section, I argue that greedy optimization, when combined

with randomization of the model building pass, has an additional benefit. When combined in a

properly randomized ensemble, no harm will come in letting each greedily optimized base learner

completely overfit the training sample. In the case of RF, this translates to the heuristic recommenda-

tion of considering fully grown trees where each terminal node contains either a single observation

or very few. Subsequently, those observations are leveraged to develop new algorithms inheriting

RF’s desirable properties.

2.1 What Happens in the Overfitting Zone Stays in the Overfitting Zone

In a global estimation procedure, overfitting will weaken the whole prediction function. More con-

cretely, estimating many useless coefficients in a linear regression will inflate the generalization

error by increasing the variance of both the few useful coefficients and the useless ones. Bagging

such a model will still be largely suboptimal: the ensemble will still rely on an average of coef-

ficients which are largely inferior to those that would be obtained from regression excluding the

useless regressors. Hence, we are still in the standard case where R2
test < R2

train reveals that the

model’s performance is inferior to that of an optimally pruned counterpart.

A greedily optimized model works differently. At each step of the forward pass, everything

that came before is treated as given and what comes next as if it will never happen. That is, as

the algorithm progresses past a certain step s, the function estimated before s is treated as given.

And everything before s was estimated assuming anything past s to be non-existent. Eventually,

the greedy algorithm will reach s∗ where the only thing left to fit is the unshrinkable “true” error

ǫi = ǫ̂i,s∗ = yi − f̂s∗(xi). The key is that entering deep in the overfitting zone will not alter f̂s−1 since

it is not re-evaluated. As a result, early non-overfitting steps can be immune to the weakening effect

of subsequent ones, as long as the latter efficiently averages out to 0 in the hold-out sample. An

immediate implication of this separability property is that there is no need to stop the forward pass

at the unknown s∗ to obtain predictions immune to estimation variance inflation.

These abstract principles can be readily applied to think about fitting trees where a step s is

splitting the subsample obtained from step s − 1. A tree does not distinguish whether the current

sample to split is the original data set of the result of an already busy sequence of splits. Moreover,
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Figure 2: Model averaging/bagging different base learners with increasingly many useless features. Units are
ln (MSEmodel/MSEOracle). Oracle has 10 regressors, SNR=2, and N = 100. Details in Appendix A.2.

like any splits along the tree path, those optimized before venturing past s∗ cannot be subsequently

revoked. This implies that the predictive structure attached to them cannot be altered nor weaken

by ulterior decisions the greedy algorithm makes.

Alternatively, we can think of fitting a linear regression with orthogonal features. A step s is

adding a regressor by fitting it to the residual of the previous step. In this linear boosting case,

we can hope that important predictors go in very soon in the process and are followed by many

useless predictors until those are exhausted. Unlike the coefficients from the kitchen-sink OLS,

the early fitted coefficients in the forward pass of the stagewise algorithm were estimated as part

of a model that only included a handful of predictors. Those are precluded from the eventual

weakening effect that comes with the inversion of a near-singular X′X.4 Figure 2 supports those

observations: for the same linear model, the effects of model averaging and bagging can differ

substantially. Clearly, Greedy LS responds much better to ensembling than OLS in an environment

incorporating noise and useless regressors. OLS’s performance past the interpolation threshold

(R2
train = 1, which occurs at 90) is still order of magnitudes worse than Greedy LS (the graph is in

log scale). There are limited benefits from tuning (moving along the x-axis) in Greedy LS, while

those are huge for OLS.

2.2 Bagging and Perturbing as an Approximation to Population Sampling

At s∗, which corresponds to the true terminal node in the case of a tree, the DGP is simply

yi = µ + ǫi. (1)

4Adding a ridge penalty will alleviate the singularity problems, but will also (potentially heavily) shrink the real
coefficients of interest, compromising their predictive power.
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Clearly, the best possible prediction is the mean of all observations contained in the node. I argue

that perfect randomization will also procure this optimal prediction out-of-sample, even if the en-

semble itself is completely overfitting in-sample. This Perfectly Random Forest is, of course, merely a

theoretical device and how close RF gets to this hypothetical version is an empirical question. Nev-

ertheless, it is widely believed (and further confirmed in section 3) that bagging (B) and perturbing

(P, draw mtry eligible features for a each split) trees can get very close to what would obtain from

population sampling. By the latter, I mean that each tree is grown on non-overlapping samples

from a population. Essentially, this is what bootstrapping any statistic is meant to approximate. Of

course, the performance of any model will improve when averaging it over many close-to indepen-

dent samples. The more subtle point being made here is that a good approximation to population

sampling (via B & P) can generate a model whose structure will be close to the optimally pruned

one, and that, without attempting any form of early stopping whatsoever. In other words, (1) more

generally represents the truth from the hypothetical point s∗ where a recursive fitting algorithm

should optimally stop. Proper inner randomization assures that a prediction close to ȳ is returned.

When faced with only noise left to fit, the prediction of a B & P ensemble of completely overfit-

ting trees achieving perfect randomization is the (optimal) sample average. This result is obtained

from taking the recursive view and assuming perfect randomization. First, the out-of-sample pre-

diction of a RF for observation j is

µ̂RF
j = 1/B

B

∑
b=1

µ̂j,b

where µ̂j,b is the prediction of the b tree for observation j. Importantly, observation j is not included

when fitting the trees, so we are looking at the prediction for a new data point using a function

trained on observations i 6= j. For simplicity, assume fully grown trees, which means terminal

nodes include a single observation.5 The model is applied to the terminal node DGP in (1). Since

the tree is fitting noise, perfect randomization implies that each out-of-sample tree prediction is a

randomly chosen yi for each b. The prediction is thus

µ̂RF
j =

1
B

B

∑
b=1

yi(b).

Define r = B/N where N is the number of training observations and r will eventually stand for

“replicas”. Since the yi(b)’s amount to random draws of y1:N, for a large enough B, we know with

certainty that the vector to be averaged (yi(1:B)) will contain r times the same observation yi. Hence,

5This also directly implies that each base learners’ R2
train is one and that of the ensemble is bounded below by the

subsampling rate, which will inevitably be much higher than R2
test = 0.
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the prediction equivalently is

µ̂RF
j =

1
B

N

∑
i=1

r

∑
r′=1

yi,r′ =
1
B

N

∑
i=1

r

∑
r′=1

yi =
r

B

N

∑
i=1

yi =
1
N

N

∑
i=1

yi

since r = B/N. In words, when a Perfectly Random Forest is starting to fit pure noise, its out-of-

sample prediction averages out to the simple mean, which is optimal under (1) and a squared loss

function. Intuitively, at s∗, the test set behavior of the prediction function (from fully grown trees) is

identical to that of doing (random) subsampling with subsamples containing one observation. Av-

eraging the results of the latter (over a large B) is just a complicated way to compute a mean. Hence,

the out-of-sample prediction as provided by the perfectly random forest is one where implicit/au-

tomatic pruning was performed.6 It is equivalent to that of an algorithm which knows the “true” s∗.

A direct implication is that we need not to worry about finding s∗ through cross-validation, since

the optimally stopped prediction is what is being reported out-of-sample. Of course, this relies on a

satisfying randomization level to be empirically attainable. Section 3 asks “How close to population

sampling are we when fitting B & P trees?” and the answer is “surprisingly close”.

The above also helps in understanding R2
test < R2

train in RF. The gap’s existence is a direct impli-

cation of implicit pruning via B & P being only active out-of-sample. Population sampling itself does

not generate R2
test < R2

train
7, only its approximation by B & P does. A central role in this is that of

mtry – the number of randomly selected features to be considered for a split. Overfitting situations

can be thought of as an overabundance of parameters vs observations. The attached predictors are

either directly available in the data or created via some form of basis expansions which trees is one

(successful) possibility out of many. In such high-dimensional situations, it is clear that the model

itself – the predictive structure – is barely identified: many different tree structure can rationalize a

training sample with R2
train = 1. Yet, these structures’ predictions substantially differ when feeding

in new data. This property of overfitting models (combined with the recursive fitting procedure) is

the channel through which mtry strongly regularize the hold-out sample prediction. However, the

resulting heterogeneity cannot deflate R2
train since different overfitting base learners, when trained

on the same data, provide the same fitted values (ytrain itself).8 Ergo, R2
test < R2

train.

6This provides a justification for Duroux and Scornet (2016)’s finding that pruning the base learners while shutting
down B can deliver a performance similar to that of RF (provided a wise choice of tuning parameters).

7As the subsampling rate mechanically decrease – a luxury obtained from a growing sample size and fixed model
complexity – the R2

train itself will look much like a true R2
test since the contribution of observation i to its out-of-bag

prediction shrinks with subsampling rate.
8Thus, the training error remaining at 0 does not prevent explicit regularization from increasing, which is happening

past R2
train = 1 in Belkin et al. (2019a)’s RF example.
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2.2.1 Not Your Average Model Averaging

At first sight, this may seem like nothing new: RF successfully controls overfitting by approximating

more resampling by model averaging. The latter is known to provide a sort of regularization that

can, in some special cases, be equivalent to more traditional shrinkage estimators (Elliott et al.,

2013; LeJeune et al., 2020). What is new is that unlike averaging a kitchen-sink OLS regression (for

instance), a greedy algorithm makes the structure estimated before s∗ immune to what happens in

the overfitting zone. In contrast, schemes like that of Eliasz et al. (2004) or those discussed in Rapach

and Zhou (2013) imply directly or indirectly tuning the number of regressors in the base learner

linear models. This means that including too many of them could damage the overall model’s

performance.9 Of course, all of this is analogous to tuning λ in a ridge regression, and the resulting

R2
test is usually in the neighborhood of R2

train.10 Hence, B & P are not the source of the “paradox” per

se: they must be paired with a greedy algorithm which can generate sufficient inner randomization.

Conversely, the ideas presented above could help at understanding why forecast combinations

work so well, which unlike confirming their multiple successes, is still an ongoing venture (Timmer-

mann, 2006). It is plausible that individual forecasters construct their predictive rule in an inductive

recursive fashion. That is, human-based economic forecasting has likely more to do with a decision

tree (based on looking at multiple time series plots) or a stepwise regression, than with the solution

of a global problem (like OLS, LASSO and others). Indeed, it is arguably much easier to learn in a

greedy fashion (both for a human and a computer) than to solve a complex multivariate problem

directly for its global solution. Thus, assuming underlying forecasts are constructed as such, the

average will behave in a very distinctive way if those are overfitting. As argued in Hellwig (2018)

for the survey of IMF forecasters, the latter assertion is very likely true. As a result, the discus-

sion above provides yet another explanation for the success of forecast combinations (especially the

simple average scheme): significant inner randomization combined with recursively constructed

overfitting forecasts provides implicit (and necessary) pruning. This is not a replacement but rather

a complement to traditional explanations (usually for linear models) that link the effects of model

averaging to traditional shrinkage estimators.11

9Figure 2 makes this distinction clear: OLS, while experiencing a reasonable performance renaissance thanks to
double descent, could still strongly benefit from tuning the number of included regressors.

10This is why using a (global) linear model to think about mtry’s effect – while it may yield interesting insights
(Mentch and Zhou, 2019) – provides an incomplete answer that fails to capture one of RF’s most salient regularities:
R2

train > R2
test.

11For instance, Friedman et al. (2001) discuss the link for RF itself, Rapach and Zhou (2013) discuss it for the case of
forecasting stock returns with averages of linear models.
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2.3 No Such Thing as Double Descent in Random Forest

In an influential paper, Belkin et al. (2019a) argue that Random Forest (RF), along with deep neural

networks, exhibits a phenomenon now known as "double descent". Its occurrence for tree ensem-

bles is an artifact of a strangely contstituted notion of function capacity. Belkin et al. (2019a) define

it as increased tree depth until interpolation occurs, and augmenting the number of trees past that

threshold. Unsurprisingly, the MSE starts to decrease sharply. The problem is, it does not do so be-

cause of increased functional complexity (like increasing the number of layers/neurons in a DNN,

or regressors in a very large Ridge regression), but rather because explicit regularization (i.e., en-

sembling) has increased. More trees in RF is akin to simulating enough draws from a distribution

of initial conditions so that the average model stabilizes, so it is not surprising to see that an ever-

increasing number of trees brings down MSE until it reaches a plateau (Friedman et al., 2001) – it is

the law of large numbers. RF may have more parameters than a single tree, but different trees are

never used together to fit the same ytrain (like in Boosting). As a result, averaging trees procuring

R2
train < 1 in isolation will not help the forest R2

train climb to 1 — i.e., they do not increase function

capacity. This is so because the additional parameters directly serve the purpose of model averaging

(which can, in linear models, have similar effects to Ridge regularization, Elliott et al. 2013) rather

than increased model complexity. Finally, Belkin et al. (2019a)’s U-shaped curve before R2
train = 1

is expected because they use a single tree (similar curves are reported for plain CART in Figure 4),

which is not a forest. Thus, with an appropriately defined notion of function capacity (underlying

trees depth), there is no such thing as double descent of empirical risk for RF.12 In fact, in line with

this paper’s ideas, we get something better: a single monotonic descent.

Figure 3: Dashed lines are true R2. DGP is Friedman 1 (Friedman, 1991). The x-axis is an index of complexity/depth.
For RF, it is a decreasing minimal size node from 200 to 1 in 30 steps, and for NN, an increasing number of layers from
1 to 30. The NN is 50 neurons wide and RF’s mtry = 1/3.

12Moreover, constituent trees, the true modulator function capacity, cannot have more parameters than observations:
once each observation is in its own cell, optimization is over.
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Figure 3 compares NN and RF. In the high noise environment, even though NN out-of-sample

performance can experience a revival in the overly parametrized regime, it remains far inferior to

that of RF, which remains constant as its R2
train goes way beyond the true R2. Strikingly, while NN’s

depth needs to be tuned in each environment, the best tree depth is always the deepest one whether

y is mostly noise or signal. Thus, when it comes to its crucial hyperparameter guiding function

capacity (see blue line), there is no tuning problem in RF. Of course, this is an implication of the

earlier discussion: explicit pruning or no pruning at all yield nearly identical performance.

It is not entirely surprising that RF behaves differently from NN, with their respective estimation

being carried very differently. For NN (or Ridge) the number of parameters is fixed during the esti-

mation/optimization whereas it is constantly evolving for a tree. That is, gradient descent methods

typically estimate a model of fixed complexity globally. If that complexity level is too great, the

model will fail to generalize. In contrast, for greedy methods, estimation/optimization and model

building go hand in hand, and, importantly, different parameters are estimated in different stages

within "transitory models" of varying complexity. Thus, it is no surprise that double descent does

not transfer to RF, and that self-pruning is not expected from a NN.

2.4 Leveraging the Insight for Other Models

Not only trees require pruning. Many additive schemes must be optimally stopped at s∗ to obtain

the best test set performance. It has been discussed that mixing B & P with a greedy recursive

algorithm can lead the algorithm to perform implicit optimal early stopping. It is natural to wonder

if certain well-known greedy model building algorithms could also benefit for this property.

In sections 3 and 4, I consider B & P versions of MARS and Boosted Trees. Before jumping to do

so, I discuss why they can plausibly benefit from it, but perhaps not as much as trees. The success

of randomized greedy algorithms is bounded by the base learner’s ability to generate a sufficiently

diversified ensemble of predictors. If not, there will be benefits from stopping base learners earlier.

The reason why trees generate the most randomization among greedy methods is the irreversibil-

ity of the model building pass. Plain Boosting is used as the counterexample, but the principle

clearly applies to MARS and similar greedily optimized additive models. Consider building a small

symmetric tree of depth 2, the prediction function is

ŷi = I(xi > 0) [α1 I(zi > 0) + α2 I(zi ≤ 0)] + I(xi ≤ 0) [(γ1 I(wi > 0) + γ2 I(wi ≤ 0)] .

Finally, define d+x,i = I(xi > 0) as a regressor and the rest accordingly. We get

ŷi = θ1d+x,id
+
z,i + θ2d+x,id

−
z,i + θ3d−x,id

+
w,i + θ4d−x,id

−
w,i.
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This representation shows trees are very singular "additive" models. It is clear that dx,i better be a

good choice, because it is not going away: any term in the model building pass will be multiplied by

it. By construction, no term added later in the expansion has the power to entirely undo the damage

of a potentially harmful first split. In other words, splitting the sample is an irreversible action. This

is what guarantees that steps occurring past s∗ will not alter what was constructed before it.

Now, let us look at a toy boosting model where the base learners are single-split trees (stumps)

and the learning rate is ν. An important difference with the above is that step s leading to

ŷi = ν
[

β1d+x,i + β2d−x,i

]

+ · · · − ν
[

β1d+x,i + β2d−x,i

]

(2)

is absolutely possible. In words, by additivity, it is possible to correct any step that eventually turned

out to be suboptimal in the search for a close-to global optima. With the randomization induced

in Stochastic Gradient Boosting and other practical aspects, this is unlikely to happen exactly in

those terms.13 Nevertheless, a small ν and a large number of steps/trees in the additive model will

mechanically increase the algorithm’s potential for "reversibility". Indeed, Rosset et al. (2004) detail

an equivalence between a procedure similar to the above and LASSO. If ν → 0, # of steps → ∞

and regressors are uncorrelated, they obtain the LASSO solution – a global solution. Thus, there

is an imminent tension between how close to a global optimization (2) can get and its capacity to

generate inner randomization sufficiently to be dispensed from tuning the stopping point.

An interesting question is whether the properties detailed here apply to LASSO, which would

free the world from ever tuning λ again. Indeed, when implemented via Least Angle Regression

(Efron et al., 2004), the algorithm very much looks like a forward stagewise regression. In the spirit

of the above, one would hope to let a randomized version of the regularization path roll until λ = 0,

average those solutions and obtain the same R2
test as if λ had been carefully tuned. Unfortunately,

LASSO violates two of the requirements listed before. First, parameters are re-evaluated along the

regularization path. For λ’s that lay in the overfitting territory, the estimated coefficients will be

weakened since they are re-estimated in an overcrowded model. Second, letting the model overfit

(when p < N) implies setting λ = 0 which returns the OLS solution for any iteration, making the

desired level of randomization likely unattainable.14

13Stochastic Gradient Boosting (Friedman, 2002) randomly selects a subset of observations at each step to train the
weak learner.

14This last point could be alleviated, when in the p > N case, the LASSO solution can include at most N predictors.
In that scenario, the included set of variables would depend on the order within the regularization path (rather than its
termination) which would increase randomization. Nevertheless, we cannot expect LASSO to benefit from automatic
tuning because linear regression coefficients are re-evaluated along the estimation path.
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2.5 Why RF is Not Equivalent to Pruning a Single Tree

Bagging and perturbing the model as implemented by RF leads to two enviable outcomes. The

first is that the randomization procedure implicitly prunes an overfitting ensemble when applied

to new data.15 This was the subject of previous subsections. The second, more standard, is that

as a result of randomization, RF performs orders of magnitude better than a single pruned true

(Breiman, 1996). This is also observed in the simulations from section 3: B & P CART does much

better than the ex-post optimally pruned base learner. In contrast, B & P MARS and Boosting will

provide similar performance to that of their respective base learner stopped at s∗. Thus, RF must be

pruning something else. I complete the argument of previous sections by arguing that its "pruning

via inner randomization" is applied on the true latent tree T in

yi = T (Xi) + ǫi (3)

which itself can only be constructed from randomization. In short, it is the recursive fitting proce-

dure itself that generates the need for Bagging.16

The inspiration for the following argument comes from forecasting with non-linear time series

models, in particular with the so-called Self-Exciting Threshold Autoregression (SETAR). A simple

illustrative SETAR DGP is

yt+1 = ηtφ1yt + (1 − ηt)φ2yt + ǫt, ηt = I(yt > 0) (4)

where ǫt is normally distributed. The forecasting problem consists in predicting yt+h for h = 1, ..., H

given information at time t. As it is clear from (4), yt+1 is needed to obtain the predictive function for

yt+2 which is either φ1 or φ2. Alas, only an estimate ŷt+1 = E(yt+1|yt) is available. By construction,

E(ŷt+1) = yt+1. However, by properties of expectations, E( f (ŷt+1)) 6= f (yt+1) if f is non-linear.

Hence, proceeding to iterate forward using ŷt+h’s as substitutes for yt+h at every step leads to a bias

problem that only gets worse with the forecast horizon. If such an analogy were to be true for trees,

this would mean that as the tree increase in depth, the more certain we can be that we are far from

T (Xi), the optimal prediction function. I argue that it is the case.

Following the time series analogy, the prediction for a particular i can be obtained by a series of

recursions. Define the cutting operator

C(S; y, X, i) ≡ Si



arg min
k∈K,c∈IR



min
µ1

∑
i∈{S|Xk≤c}

(yi − µ1)
2 + min

µ2
∑

i∈{S|Xk>c}

(yi − µ2)
2









15A simpler example is that of ridge regression: if there are more regressors than observations, then λ → 0 leads to a
multitude of solutions for β and the non-identification of the predictive structure.

16In Appendix A.6, I review a more standard case for Bagging based on presumed heteroscedascity.
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where Si extract the subset that includes i out of the two produced by the splitting step. Inside the Si

operator is the traditional one-step tree problem. K is the set of potential features to operate the split

at an optimized value c. S is the sample to split and is itself the result of previous cutting operations

from steps s − 1, s − 2 and so on. To get the next finer subset that includes i, the operator is applied

to the latest available subset: S′ = C(S; y, X, i). The prediction for i can be obtained by using C

recursively starting from S0 (the full data set) and taking the mean in the final S chosen by some

stopping rule. In other words, the true tree prediction in (3) is T (Xi) = E
(

yi′ |i
′ ∈ CD(S0; y, X, i)

)

where D is the number of times the cutting operator must be applied to obtain the final subset in

which i resides. To obtain the true tree prediction – the mean of observations in i’s "true" terminal

node – the sequence of C’s must be perfect. Hence, consistency remains on safe ground: as the

sample size grows large, estimation error vanishes and Ŝ → S at each step. The finite sample story

is, however, quite different.

Using ŷt+1 in situ of yt+1 in SETAR and Ŝ in situ of S in a tree generate problems of the same

nature. At each step, the expected composition of Ŝ is indeed S.17 However, just like the recursive

forecasting problem, the expected terminal subset is defined as an expectation over a recursion of

nonlinear operators. Using Ŝ rather than the unobserved S at each step does not deliver the desired

expectation. Intuitively, getting the right k and c out of many possible combinations is unlikely.

These small errors are reflected in Ŝ 6= S which is taken as given by the next step. Those errors

eventually trickle down with absolutely no guarantee that they average out. In short, the direct

CART procedure produces an unreliable estimate of a greedily constructed predictor T (Xi) because

it takes as given at each step something that is not given, but estimated. Since C is a non-linear

operator, this implies that the mean itself is not exempted from bias.

If the direct procedure cannot procure the right expected subset on which to take the average

and predict, what will? The intuition for the answer, again, stems from the SETAR example. The

proposed solution in the literature is – with a distinctively familiar sound – using bootstrap to simu-

late the intractable expectation (Clements and Smith (1997)).18 ŷt+1 is augmented with a randomly

drawn shock (from a parametric distribution or from those in the sample) and a forecast of yt+2

is computed conditional on it. Then, the procedure is repeated for B different shocks and the fi-

nal forecast is the average of all predictions, which, by the non-linearity of f (), can make it a very

different quantity from f (ŷt+1). A forecaster will naturally be interested in more than yt+2. This

procedure can be adapted by replacing the draw of a single shock by a series of them that will be

used as the model is simulated forward. The prediction at step H is an average of forecasts at the

end of each b randomly generated sequence.

Analogously, a natural approach is to simulate the distribution of S entering a next splitting step

17This notion can be formalized by defining the expectation in terms of indicator functions for each candidate obser-
vation. Each observation at each cutting step is expected to be classified in the right one of two groups.

18For a discussion of the SETAR case and other non-linear time series models, see section 2.7 in Khan (2015).
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is to bootstrap the sample of the previous step, run C a total of B times, apply C in the next step and

finally take the average of these B bootstrapped trees predictions. For a deeper tree, the growing

process continues on the bootstrapped sample and the average is taken once the terminal condition

is reached.

Coming to the original question: if RF is pruning something, what is it? I conjecture it is pruning

T in (3). Unlike the implicit early-stopping property explained in section 2, this statement cannot

be supported or refuted by the simulations presented in section 3. However, in Goulet Coulombe

(2021), it is shown that under a "true tree" DGP, the performance of RF and a version of CART

with a low learning rate coincides. The latter can be linked to fitting the true tree optimally via an

(extremely) high-dimensional LASSO problem.

3 Simulations

Simulations are carried to display quantitatively the insights presented in the previous section.

Namely, I want to display that (i) ideal population sampling of greedy algorithms performs prun-

ing/early stopping, (ii) RF very closely approximates it for trees, and (iii) the property also extends

to altered versions of Boosting and MARS.

3.1 Setup

I consider 3 versions of 3 algorithms on 5 DGPs. The 3 models are a single regression tree (CART),

Stochastic Gradient Boosting (with tree base learners) and MARS. The five DGPs are a Tree, Fried-

man 1, 2 and 3 (Friedman (1991)) as well as a linear model (the sum of five mutually orthogonal and

normally distributed regressors). The first two versions of each model are obvious. First, I include

the plain model and second, a bootstrapped and perturbed ensemble of it, as described earlier. Ad-

ditionally, B & P versions of MARS and Boosting have the so-called data augmentation (DA) option

activated. It consists in enlarging the feature matrix to additionally incorporate X̃ = X + E where E

is a matrix of Gaussian noise. For categorical variables, X̃ is obtained by duplicating X and shuffling

a fraction of its rows. Overall, DA can improve perturbation’s potential when regressors are scarce.

The Boosting and MARS B & P + DA versions will be referred to by the less gloomy-sounding sobri-

quets Booging and MARSquake. An R package implements both. Execution details are relegated to

Appendix A.4.

The third version of each model, "Population Sampling" aims at displaying what results look

like under the ideal case of perfect randomization. Subsampling is replaced by sampling B non-

overlapping subsets of N observation from a population of B × N observations. This version help

discern which algorithm generates enough inner randomization to get close to that desirable upper

bound.
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Figure 4: This plots the average hold-out sample R2 between the prediction and the true conditional mean for 30 simulations. The level of noise
is calibrated so the SNR is 4. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth of the greedy model. For
CART, it is a decreasing minimal size node ∈ 1.4{16,..,2}, for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing
number of included terms ∈ 1.4{2,..,16}. Both training and test sets have N = 400.

3.2 Results

Figures 4 and 6 report the median R2 between hold-out sample predictions and the true conditional

mean for 30 simulations. Columns are DGPs and rows are models. The x-axis is an increasing index

of complexity/depth for each greedy model. Overfitting should manifest itself by a decreasing

R2 past a certain depth. I consider two levels of noise, one that corresponds to a SNR ratio of 4

(Figure 4) and one of 1 (Figure 6 in Appendix). What does section 2 imply for the curves in those

two Figures? First, the population sampling versions (purple line) should be weakly increasing

since they perform implicit "perfect" early stopping. Second, the B & P versions (orange), should be

parallel to those provided the underlying greedy model is generating enough inner randomization.

Third, the value of the orange line at the point of maximal depth should be as high or higher than

the maximal value of the green curve (i.e, the plain version’s ex-post optimal stopping point).

When it comes to CART, those three properties are verified exactly. For any DGP, and both the

population sampling and the B & P versions, increasing the complexity of the model by shrinking

the minimal node size does not lead to a performance metric that eventually decrease. The striking

parallelism of the purple and orange lines is due to trees generating enough inner randomization
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with B & P so it performs self-pruning at a level comparable to that of the ideal experiment.19

Depending on the DGP, the plain version follows a typical bias-variance trajectory: it generally

follows the B & P one for some time before detaching itself from it past its ex-post optimal s∗. This

early parallelism of the green and orange lines corroborate the idea that B & P CART (aka RF)

performs implicit pruning.

Looking at Boosting and MARS, we again see that the population sampling line is weakly in-

creasing in the respective depth of both models. If the B & P version fails to match this ideal shape,

it is because the current specification cannot generate enough inner randomization. Figure 4 shows

unequivocally encouraging results for both Boosting and MARS. For all DGPs, a clear pattern is ob-

served: the B & P version’s performance increases until it approximately reaches the optimal point

(as can be ex-post determined by the hump in the green line) and then remains at that level, even

if the base learners (one example being the ’Plain’ version) are clearly suffering from overfitting.

Under those conditions, it is fair to say that the enviable RF property is transferable to Boosting,

and in a more pronounced fashion, MARS. When the noise level increase as depicted in Figure 6,

we observed the same – albeit marginally less successful – phenomenon. Indeed, in those harder

conditions, there is a small gap between ideal randomization and the one generated by Booging

and MARSquake. However, the decrease in performance following the optimal depth is orders of

magnitude smaller than what is observed for the plain version.

4 Empirics

This section has a more subtle aim than crowning the winner of a models’ horse race. Rather than

focusing on improving the tuned/pruned model which is already believed to be optimal, Booging

and MARSquake bag and perturb completely overfitting based learners, which, as we will see, per-

form very poorly by themselves. Their performance will be compared to versions of Boosting and

MARS where the optimal stopping point has been tuned by CV. The goal is to verify that in many in-

stances, Booging and MARSquake provide similar predictive power to that of tuned models. Since

CV’s circumstantial imperfections are vastly documented (Krstajic et al., 2014; Bergmeir et al., 2018),

it is not unrealistic to expect the B & P versions to sometimes outperform their tuned counterparts.

4.1 Setup

Most data sets are standard with a few additions which are thought to be of interest. For instance,

many of the standard regression data sets have a limited number of features with respect to the

number of observations. A less standard inclusion like NBA Salary has 483 observations and 26

19The purple line is mechanically expected to be at least above the orange one for a fixed depth: the former uses more
data points which also helps at reducing estimation error.
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features. Crime Florida pushes it much further with a total of 98 features and 90 observations. Those

data sets are interesting because avoiding CV could generate larger payoffs in higher-dimensional

setups. Still in the high-dimensional realm, but with the additional complication of non-iid data,

are the 6 US macroeconomic data sets based on McCracken and Ng (2020).20 Moreover, traditional

CV can be overoptimistic in a time series context and avoiding it could help (Bergmeir et al., 2018).

The 3 macroeconomic variables are quarterly GDP growth, unemployment change and inflation. I

consider predicting those variables at an horizon of 1 quarter (h = 1) and 2 quarters (h = 2). Further

information on data sets is gathered in Table 1. I do a 70-30 training-test split for all data sets.

Beyond Boosting, MARS, and their novel variants, I include a few benchmark models. Those

include LASSO, RF with default tuning parameters (mtry=1/3), a cost-complexity pruned regres-

sion tree, and two different neural networks (shallow and deep). Many additional NNs details are

in Appendix A.5. For macro data sets, benchmarks additionally include an autoregressive model

of order 2 (AR) and a factor-augmented regression with 2 lags (FA-AR) which are widely known

to be hard to beat (Stock and Watson, 1999; Kotchoni et al., 2019; Goulet Coulombe et al., 2019).

Remaining details needed to replicate results are in Appendix A.3.

4.2 Results

All prediction results are reported in Table 2 and an example is plotted in Figure 5. Moreover, to

empirically document the R2
test and R2

train gap, Table 3 (Appendix) reports R2
train’s. Overall, empir-

ical results confirm the insights developed in section 2. In almost every instance, the overfitting

ensembles do at least as well as the tuned version while completely overfitting the training sam-

ple, the same way RF would. Sometimes they do better. When they do not, going from B & P to

MARSquake and Booging helps. This seldom occurring wedge suggests an important role for data

augmentation when features are scarce.

For instance, on the Abalone data set, non-tuned MARS is overfitting, which leads to subpar

performance. In line with simulation results, the newly proposed overfitting ensembles perform

similarly well to using a single base learner and tuning it. Even better, Booging delivers statistically

significant gains at the 1% confidence level. As RF, those two ensembles have a very high R2
train (see

Table 3 in the appendix) and yet, stellar performance is reported on the test set. For Fish Toxicity,

Red Wine, White Wine, the plain overfitting versions are significantly worse than the tuned versions,

and ensembling them delivers a performance (with respect to tuned counterparts) that is either

significantly better or statistically indistinguishable. For California Housing, which has more than

20Bagging has received attention of its own in the macroeconomic forecasting literature (Inoue and Kilian, 2008; Hille-
brand and Medeiros, 2010; Hillebrand et al., 2020). However, nearly all studies consider the more common problem of
variable selection via hard-thresholding rules – like t-tests (Lee et al., 2020). Those strategies are akin to what discussed
in section 2.2.1, and cannot (and do not) strive for automatic pruning. Nevertheless, the motivation for using Bagging
in their context is very close to what described for trees in section 2.5.
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(a) Abalone (b) Boston Housing

(c) Crime Florida (d) Fish Toxicity

(e) US Unemployment Rate (h = 1) (f) US Inflation (h = 1)

(g) California Housing (h) White Wine

Figure 5: A Subset of Empirical Prediction Results. Performance metric R2
test. Darker green bars means the perfor-

mance differential between the tuned version and the three others is statistically significant at the 5% level using t-tests
(and Diebold and Mariano (2002) tests for time series data). Light green means the difference is not significant at the
prescribed level. To enhance visibility in certain cases, R2

test’s below -0.25 are constrained to 0.25.

18



20 000 observations, all ensembles significantly improve over the tuned version for MARS.

For Crime Florida – the very high-dimensional case which is not time series – the two ensembles

of completely overfitting MARS (their R2
train are respectively 0.97 and 0.98) are doing much better

than the tuned version. They both deliver a R2
test of almost 0.8 in the case of MARSquake. The latter

is also the overall second best model (being 1% less than NN) for this data set. Meanwhile, B & P

Boosting and Booging are doing marginally better than the tuned version.

A now-familiar pattern is also visible for both unemployment and (to some extent) GDP at h = 1.

Booging does as well as the tuned Boosting. Moreover, the former provides the best outcome among

all models, with a 11% R2
test increase with respect to both economic forecasting workhorses (AR, FA-

AR). When it comes to plain and tuned MARS, all models are somewhat worse than the benchmarks

with the tuned model itself delivering a terrible R2
test. MARSquake is partially exempted from this

failure for GDP, and completely is for unemployment. In the latter case, MARSquake is as good as

FA-AR which incredible resilience is vastly documented (Stock and Watson, 2002; Goulet Coulombe

et al., 2019). For inflation (h = 1), the best models are clearly B & P MARS and DNN. Finally,

it is noteworthy that Booging dominates its tuned counterpart for all economic data sets. Thus,

overfitting ensembles work well for economic forecasting where CV can be hazardous.

Lastly, on NN and Deep NN performances. DNN is mostly dominated by RF and other en-

sembles, with the exception of inflation where it narrowly beats B & P MARS. Giving the ongoing

discussion on the properties of DNN’s, it is interesting to check if DNN behaves similarly to RF. The

short answer is "no". RF’s R2
train is almost always above 0.9, whereas that of DNN fluctuates highly

depending on the target. Also, DNN does not display RF’s emblematic resilience across data sets.

5 Conclusion

A fundamental problem is to detect at which point a learner stops learning and starts imitating. In

ML, the common tool to prevent an algorithm from damaging its hold-out sample performance by

overfitting is cross-validation. It is widespread knowledge that performing CV on Random Forests

rarely yields dramatic improvements. Concurrently, it is often observed that R2
test < R2

train without

R2
test being any less competitive. I argued that proper inner randomization as generated by bagging

and perturbing the model, when combined with a greedy fitting procedure, will implicitly prune

the learner once it starts fitting noise. By the virtues of recursive model building, the earlier fitting

steps are immune to the instability brought upon by ulterior (and potentially harmful) steps. Once

upon a time, the author heard a very senior data scientist and researcher say in a seminar, ’If you

put a gun to my head and say "predict", I use Random Forest.’ This paper rationalizes this feeling

of security by noting that unlike other learners, RF performs its own pruning without the perils of

cross-validation. Thus, it seems that, mixed with a proper amount of randomization, greed is good.
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A Appendix

A.1 Additional Graphs and Tables

Figure 6: This plots the hold-out sample R2 between the prediction and the true conditional mean. The level of noise is calibrated so the signal-
to-noise ratio is 1. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth of the greedy model. For CART, it is
a decreasing minimal size node ∈ 1.4{16,..,2}, for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing number of
included terms ∈ 1.4{2,..,16}.

Figure 7: This is Figure 4’s first row with mtry= 0.5.
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Table 1: 20 Data Sets

Abbreviation Observations Features Data Source

Abalone 4,177 7 archive.ics.uci.edu
Boston Housing 506 13 lib.stat.cmu.edu
Auto 392 7 archive.ics.uci.edu
Bike Sharing 17,379 13 archive.ics.uci.edu
White Wine 4,898 10 archive.ics.uci.edu
Red Wine 1,599 10 archive.ics.uci.edu
Concrete 1,030 8 archive.ics.uci.edu
Fish Toxicity 908 6 archive.ics.uci.edu
Forest Fire 517 12 archive.ics.uci.edu
NBA Salary 483 25 kaggle.com
CA Housing 20,428 9 kaggle.com
Crime Florida 90 97 census.gov
Friedman 1 R2=.7 1,000 10 cran.r-project.org
Friedman 1 R2=.4 1,000 10 cran.r-project.org
GDP h=1 212 599 Google Drive
GDP h=2 212 563 Google Drive
UNRATE h=1 212 619 Google Drive
UNRATE h=2 212 627 Google Drive
INF h=1 212 619 Google Drive
INF h=2 212 611 Google Drive

Notes: The number of features includes categorical variables expanded as multiple dummies
and will thus be sometimes higher than what reported at data source website. Data source URLs
are visibly abbreviated but lead directly to the exact data set or package being used. The num-
ber of features varies for each macro data set because a mild screening rule was implemented
ex-ante, the latter helping to decrease computing time.
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http://archive.ics.uci.edu/ml/datasets/Abalone
http://lib.stat.cmu.edu/datasets/boston
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity
https://archive.ics.uci.edu/ml/datasets/Forest+Fires
https://www.kaggle.com/aishjun/nba-salaries-prediction-in-20172018-season/data
https://www.kaggle.com/camnugent/california-housing-prices
https://www.census.gov/data/datasets/1990/dec/summary-file-3.html
https://cran.r-project.org/web/packages/tgp/vignettes/tgp.pdf
https://cran.r-project.org/web/packages/tgp/vignettes/tgp.pdf
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing


Table 2: R2
test for all data sets and models

Benchmarks GBM MARS

FA-AR AR LASSO RF Tree NN DNN Tuned Plain B & P Booging Tuned Plain B & P Quake

Abalone 0.52 0.56 0.45 0.54 0.53 0.50 0.48 0.53* 0.54** 0.57 0.35* 0.31* 0.58***
Boston Housing 0.67 0.88 0.79 0.86 0.85 0.89 0.88 0.90 0.85* 0.83 0.87 0.92 0.91
Auto 0.66 0.71 0.61 0.13 0.64 0.64 0.59∗∗ 0.65 0.64* 0.71 −0.54 * 0.53 0.63
Bike Sharing 0.38 0.91 0.73 0.88 0.94 0.95 0.93*** 0.91*** 0.91*** 0.71 0.89*** 0.87*** 0.90***
White Wine 0.28 0.52 0.28 0.37 0.26 0.37 0.32* 0.44*** 0.38 0.33 0.33*** 0.39** 0.38***
Red Wine 0.34 0.47 0.35 0.33 0.37 0.37 0.23** 0.37 0.38 0.38 0.29* 0.33 0.35
Concrete 0.59 0.90 0.71 0.89 0.88 0.92 0.92 0.90* 0.90*** 0.83 0.87 0.30*** 0.89
Fish Toxicity 0.56 0.65 0.57 0.60 0.63 0.63 0.54*** 0.61 0.62 0.56 −0.25 *** 0.54* 0.61
Forest Fire 0.00 −0.11 0.00 −0.02 0.01 −0.03 −0.68 *** −0.32 *** −0.08 0.01 −1.55 * −0.68 −0.36
NBA Salary 0.52 0.60 0.34 0.22 0.21 0.50 0.29*** 0.49 0.50 0.36 0.11* 0.59* 0.53
CA Housing 0.64 0.82 0.59 0.75 0.74 0.82 0.82 0.83*** 0.82** 0.72 0.77*** 0.81*** 0.79***
Crime Florida 0.66 0.79 0.60 0.82 0.75 0.75 0.77 0.81* 0.79 0.70 0.44* 0.81 0.80
F1 R2 = 0.7 0.53 0.62 0.50 0.43 0.51 0.65 0.54*** 0.60*** 0.67** 0.68 0.55 0.62 0.69***

F1 R2 = 0.4 0.32 0.40 0.36 0.19 0.28 0.40 0.16*** 0.34* 0.41 0.41 0.14* 0.35 0.40*
GDP h=1 0.27 0.27 0.24 0.35 0.18 0.06 0.26 0.36 0.17 0.37 0.38 0.00 −9.08 *** −0.45 ** −0.12 **
GDP h=2 −0.03 0.17 −0.01 0.16 0.00 −0.06 −0.52 0.15 −0.56 ** 0.20 0.18 −0.40 −4.37 ** −0.41 * −0.37 ***
UNRATE h=1 0.71 0.53 0.43 0.59 0.22 −0.69 0.62 0.59 0.66 0.58 0.65 −0.65 −0.72 *** 0.53 0.68
UNRATE h=2 0.52 0.29 0.26 0.37 0.16 0.14 0.41 0.43 0.35 0.42 0.48 0.16 −0.80 ** −0.28 0.26
INF h=1 0.25 0.33 0.43 0.42 0.25 0.41 0.49 0.35 0.24 0.37 0.39 0.37 −0.57 ** 0.45 0.34
INF h=2 0.05 0.22 0.09 0.28 0.45 0.19 0.51 0.15 −0.26 *** 0.16 0.27* 0.39 −2.50 ** 0.24 0.42

Notes: This table reports R2
test for 20 data sets and different models, either standard or introduced in the text. For macroeconomic targets (the last 6 data sets),

the set of benchmark models additionally includes an autoregressive model of order 2 (AR) and a factor-augmented regression with 2 lags (FA-AR). Numbers
in bold identify the best predictive performance of the row. For GBM and MARS, t-test (and Diebold and Mariano (2002) tests for time series data) are per-
formed to evaluate whether the difference in predictive performance between the tuned version and the remaining three models of each block is statistically
significant. ’*’, ’**’ and ’***’ respectively refer to p-values below 5%, 1% and 0.1%. F1 means "Friedman 1" DGP of Friedman (1991).
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Table 3: R2
train for all data sets and models

Benchmarks GBM MARS

FA-AR AR LASSO RF Tree NN DNN Tuned Plain B & P Booging Tuned Plain B & P Quake

Abalone 0.50 0.92 0.50 0.60 0.59 0.53 0.85 0.86 0.91 0.57 0.65 0.78 0.61
Boston Housing 0.72 0.98 0.87 0.90 0.89 1.00 1.00 0.99 0.99 0.90 0.97 0.97 0.98
Auto 0.68 0.96 0.77 0.13 0.81 0.86 1.00 0.98 0.98 0.77 0.98 0.93 0.96
Bike Sharing 0.38 0.98 0.89 0.95 0.96 0.95 0.94 0.95 0.71 0.89 0.88 0.90
White Wine 0.26 0.92 0.27 0.47 0.75 0.44 0.82 0.85 0.88 0.37 0.46 0.52 0.51
Red Wine 0.29 0.91 0.41 0.40 0.42 0.41 0.96 0.94 0.95 0.44 0.56 0.69 0.67
Concrete 0.61 0.98 0.75 0.91 0.93 0.98 0.99 0.98 0.99 0.88 0.98 0.74 0.95
Fish Toxicity 0.54 0.93 0.60 0.64 0.61 0.92 0.97 0.95 0.97 0.63 0.96 0.82 0.88
Forest Fire 0.00 0.81 0.00 0.00 0.07 0.40 0.97 0.88 0.91 0.04 0.62 0.73 0.76
NBA Salary 0.47 0.93 0.72 0.65 0.71 0.99 1.00 0.97 0.97 0.64 0.92 0.84 0.93
CA Housing 0.63 0.97 0.61 0.78 0.85 0.86 0.89 0.91 0.90 0.72 0.80 0.83 0.81
Crime Florida 0.65 0.96 0.84 0.88 0.94 1.00 1.00 0.98 0.98 0.75 1.00 0.97 0.98
F1 R2 = 0.7 0.45 0.93 0.45 0.62 0.71 0.95 1.00 0.97 0.97 0.65 0.81 0.84 0.86
F1 R2 = 0.4 0.23 0.89 0.30 0.34 0.35 0.48 1.00 0.94 0.94 0.38 0.64 0.75 0.76
GDP h=1 0.41 0.11 0.23 0.91 0.51 0.26 0.44 0.81 1.00 0.96 0.96 0.47 1.00 0.94 0.94
GDP h=2 0.26 0.06 0.07 0.89 0.00 0.26 0.55 0.76 1.00 0.95 0.95 0.29 1.00 0.94 0.95
UNRATE h=1 0.57 0.40 0.48 0.93 0.81 -0.07 0.82 0.83 1.00 0.97 0.97 0.76 0.99 0.97 0.96
UNRATE h=2 0.41 0.13 0.35 0.92 0.38 0.42 0.25 0.99 1.00 0.96 0.96 0.75 1.00 0.96 0.96
INF h=1 0.76 0.73 0.90 0.97 0.81 0.64 0.94 1.00 1.00 0.99 0.99 0.73 1.00 0.99 0.99
INF h=2 0.69 0.63 0.72 0.96 0.72 0.67 0.92 1.00 1.00 0.99 0.98 0.81 1.00 0.99 0.98

Notes: This table reports R2
train for 20 data sets and different models, either standard or introduced in the text. For macroeconomic targets (the last 6 data

sets), the set of benchmark models additionally includes an autoregressive model of order 2 (AR) and a factor-augmented regression with 2 lags (FA-AR).
F1 means "Friedman 1" DGP of Friedman (1991).

26



A.2 Simulations Details

For Figure 2, the true linear model has 10 mutually uncorrelated regressors, SNR=2, and N = 100.

OLS has a slight built-in advantage because it always include the relevant regressors plus useless

ones whereas Greedy LS has to select them itself. It is understood that OLS’s performance would

deteriorate even further without this crutch. Each prediction is the average over 50 models and

20 bagging replicas. For OLS, bagging is bypassed since it provides the same expectation as using

the full sample once. The 50 models are constructed as follows: for each model, I generate x new

useless regressors and add them to the relevant ones, then run estimation. The Greedy OLS is

operationalized with the function glmboost in R, setting the learning rate at 1.

Figures 4 and 6. In terms of standard hyperparameters, Boosting has the shrinkage parameter

ν = 0.1, the fraction of randomly selected observations to build trees at each step is 0.5, and the

interaction depth of those trees is 3. Of course, while those are fixed for all simulations, we will

want to tune them once we get to real data. However, here, the point is rather to study the hold-out

sample performance of each model as its depth increase, and compare that across the 3 versions.

MARS has the polynomial degree set to 3.21 RF is used with a rather high mtry of 9/10 so to be

better visually in sync with plain CART at a given depth.22 The subsampling rate is 2/3 for all

bagged models.

The true tree DGP is generated using a CART algorithm’s prediction function as a "new" condi-

tional mean function from which to simulate. The "true" minimal node size being used is 40 (10% of

the training set). Friedman DGP are obtained from the package tgp and typically generate a data

set with 5 useful regressors (used in the true DGP) and 5 useless ones.

A.3 Empirics Details

For all data sets, I keep 70% of observations for training (and optimizing hyperparameters if needed)

and the remaining 30% to evaluate performance. For cross-sectional data sets, those observations

are chosen randomly. For time series applications, I keep the observations that consist of the first

70% in the sample as the training set. The test set starts before the 2001 recession and ends in

2014, which conveniently includes two recessions. Lastly, a seldomly binding outlier filter is imple-

mented. Every prediction that is larger than twice the maximal absolute difference (in the training

sample) with respect to the mean is replaced by the RF prediction (which is immune to outliers since

it cannot extrapolate). This last addition is particularly helpful to prevent wildly negative R2
test for

non-tuned plain MARS and (less frequently) Boosting.

21For those unfamiliar with this machinery, see Friedman (2002) for Boosting and Friedman (1991) or Milborrow
(2018) for MARS.

22For completeness, results when using mtry= 1/2 for both plain CART and RF are reported in Figure 7. It is clear
that in the high signal-to-noise ratio environment, the milder perturbation of mtry=9/10 is preferable.

27



The X matrix for the macroeconomic data sets is based on Goulet Coulombe (2020)’s recommen-

dations for ML algorithms when applied to macro data, which is itself a twist (for statistical effi-

ciency and lessen computational demand) on well-accepted time series transformations (to achieve

stationarity) as detailed in McCracken and Ng (2020).23 Each data set has 212 observations and

around 600 predictors. The number of features varies across macro data sets because a mild screen-

ing rule was implemented ex-ante, the latter helping to decrease computing time.

A.4 Implementation Details for Booging and MARSquake

Booging and MARSquake are the B & P +DA versions of Boosted Trees and MARS, respectively.

The data-augmentation option will likely be redundant in high-dimensional situations where the

available regressors already have a factor structure (like macroeconomic data).

ABOUT B. For both algorithms, B is made operational by subsampling. As usual, reasonable candi-

dates for the sampling rate are 2/3 and 3/4. All ensembles use B = 100 subsamples.

ABOUT P. The primary source of perturbation in Booging is straightforward. Using subsamples to

construct trees at each step is already integrated within Stochastic Gradient Boosting. By construc-

tion, it perturbs the Boosting fitting path and achieve a similar goal as that of the original mtry in

RF. Note that, for fairness, this standard feature is also activated for any reported results on "plain"

Boosting.

The implementation of P in MARSquake is more akin to that of RF. At each step of the forward

pass, MASS evaluate all variables as potential candidates to enter a hinge function, and select the

one which (greedily) maximize fit at this step. In the spirit of RF’s mtry, P is applied by stochasti-

cally restricting the set of available features at each step. I set the fraction of randomly considered

X’s to 1/2.

To further enhance perturbation in both algorithms, we can randomly drop a fraction of features

from base learners’ respective information sets. Since DA creates replicas of the data and keep some

of its correlation structure, features are unlikely to be entirely dropped from a boosting run, pro-

vided the dropping rate is not too high. I suggest 20%. This can is analogous to mtry-like randomly

select features, but for a whole tree (in RF) rather than at each split.

ABOUT DA. Perturbation work better if there is a lot to perturb. In many data sets, X is rich in

observations but contains few regressors. To assure P meets its full randomization potential, a

cheap data augmentation procedure can be carried. DA is simply adding fake regressors that are

correlated with the original X and maintain in part their cross-correlation structure. Say X contains

K regressors. I take the N × K matrix X and create two duplicates X̃ = X + E where E is a matrix

23Goulet Coulombe et al. (2019) further study optimal data transformations for machine macroeconomic forecasting
for many series and algorithms.
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of Gaussian noise. SD is set to 1/3 that of the variable. For Xk’s that are either categorical or ordinal,

I create the corresponding X̃k by taking Xk and shuffling 20% of its observations.

LAST WORD ON MARS. It is known that standard MARS has a forward and a backward pass.

The latter’s role is to prevent overfitting by (traditional) pruning. Obviously, there is no backward

pass in MARSquake. Certain implementations of MARS (like earth, Milborrow (2018)) may contain

foolproof features rendering the forward pass recalcitrant to blatantly overfit in certain situations

(usually when regressor are not numerous). To partially circumvent this rare occurrence, one can

run MARS again on residuals obtained from a first MARS run which failed to attain a high enough

R2
train.

A.5 Additional NN details

The first NNs is shallow (2 layers of 32 and 16 neurons) and is inspired from Gu et al. (2020). Such

an architecture has provided reasonable performance on Canadian (Goulet Coulombe et al., 2020)

and UK macroeconomic data Goulet Coulombe et al. (2021). The second is a deep NN (DNN, with

10 layers of 100 neurons) following the recommendations of Olson and Wyner (2018) for small data

sets.

For both neural networks, the batch size is 32 and the optimizer is Adam (with Keras default

values). Continuous X’s are normalized so that all values are within the 0-1 range.

More precisely, NN in Table 2 is a standard feed-forward fully-connected network with an ar-

chitecture in the vein of Gu et al. (2020). There are two hidden layers, the first with 32 neurons and

the second with 16 neurons. The number of epochs is fixed at 100. The activation function is ReLu

and that of the output layer is linear. The learning rate ∈ {0.001, 0.01} and the LASSO λ parameter

∈ {0.001, 0.0001} are chosen by 5-fold cross-validation. A batch normalization layer follows each

ReLu layers. Early stopping is applied by stopping training whenever 20 epochs pass without any

improvement of the cross-validation MSE.

More precisely, DNN in Table 2 is a standard feed-forward fully-connected network with an

architecture closely following that of Olson and Wyner (2018) for small data sets. There are 10

hidden layers, each featuring 100 neurons. The number of epochs is fixed at 200. The activation

function is eLu and that of the output layer is linear. The learning rate ∈ {0.001, 0.01, 0.1} and the

LASSO λ parameter ∈ {0.001, 0.00001} are chosen by 5-fold cross-validation. No early stopping is

applied.

A.6 Bagging and Heteroscedasticity

Grandvalet (2004) expands on Breiman (1996) and discuss in greater detail why bagging can boost

trees’ performance but not so much for OLS or splines. His argument basically boils down that trees
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are non-linear functionals of the data while splines or OLS are just linear combinations of the data.

In the case of OLS, perturbing the data weights B times gives a similar β̂ as computing OLS with

all weights being equal to 1. However, Êtree
ω

(y|X) can be very far from just computing the same

expectation at the mean ωi = 1 ∀i. Hence, if ωi in

yi = T (Xi) + ωiǫi, ǫi ∼ N(0, 1) (A.1)

follows a certain non-degenerate distribution, it is argued that bagging will yield significant im-

provements. Of course, under these conditions (and a linear DGP), OLS would still be consis-

tent, so that as the sample gets large, heteroscedascity does not compromise prediction.24 That is,

ÊOLS(y|X; ω) → ÊOLS(y|X; ω̂ = 1) as the sample size grows. No such guarantees are available for

complicated non-linear recursive estimators, such as trees.

Such reasoning can be extended to finite samples and in a straightforward application of a basic

property of expectations: E( f (ω)) 6= f (E(ω)) unless f is linear in ω. If f is only mildly non-linear

– like for the OLS or ridge functional, the shortcut f (E(ω)) will be a reliable approximation to the

real expectation of interest (Breiman (1996) refers to those as "stable" predictors). If f = T , the

shortcut likely provides an abysmal approximation. An alternative is to resort to "pairs" bootstrap

(or subsampling) to implicitly simulate from a plausible distribution of ωi and then use the mean

over many bootstrapped trees to obtain Êtree
ω

(y|X). Coming back to the main point of this paper,

it is clear that pruning CART is an imperfect enterprise because the model it is pruning will not

coincide to the true conditional expectation if ωi’s are heterogeneous.

Nevertheless, relying on presumed "badness" in the data to justify RF’s usual supremacy over a

single tree seems thin. There are many examples where heteroscedascity is visibly absent from the

test set errors and yet, RF will do much better than (pruned) CART.

24A different story occurs in small samples where down-weighting noisy observations can provide substantial im-
provements. One example out of many is the use of stochastic volatility to improve (even) point forecasts in a macroe-
conomic context.
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