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Abstract

On September 15th 2020, Arctic sea ice extent (SIE) ranked second-to-lowest in history and keeps

trending downward. The understanding of how feedback loops amplify the effects of external

CO2 forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR)

designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous sys-

tems of equations, routinely estimated to predict and understand the interactions of multiple

macroeconomic time series. The VARCTIC is a parsimonious compromise between full-blown

climate models and purely statistical approaches that usually offer little explanation of the un-

derlying mechanism. Our completely unconditional forecast has SIE hitting 0 in September by

the 2060’s. Impulse response functions reveal that anthropogenic CO2 emission shocks have an

unusually durable effect on SIE – a property shared by no other shock. We find Albedo- and

Thickness-based feedbacks to be the main amplification channels through which CO2 anomalies

impact SIE in the short/medium run. Further, conditional forecast analyses reveal that the future

path of SIE crucially depends on the evolution of CO2 emissions, with outcomes ranging from

recovering SIE to it reaching 0 in the 2050’s. Finally, Albedo and Thickness feedbacks are shown

to play an important role in accelerating the speed at which predicted SIE is heading towards 0.
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1 Introduction

With 3.74 million square kilometers on September 15th 2020, Arctic sea ice extent ranked

second-to-lowest in history, after the record minimum in 2012. A persistent retreat of SIE

may further accelerate global warming and threaten the composition of the Arctic’s ecosys-

tem (Screen and Simmonds (2010)). The Coupled Model Intercomparison Project (CMIP)

assembles estimates of long-run projections of Arctic sea ice from many climate models.

These models try to reproduce the geophysical dynamics and interrelations among various

variables, influencing the evolution of global climate.

With CMIP being in its 6th phase (CMIP6), climate models now provide more realistic

forecasts of the Arctic’s sea ice cover compared to its predecessor CMIP5 (see Stroeve et al.

(2012), Notz et al. (2020)). The majority of contributors to CMIP6 see the Arctic’s September

mean sea ice to retreat below the 1× 106 km2 mark before the year 2050. Despite following

the hitherto accepted physical laws of our climate, its chaotic nature, i.e. the still obscure

interplay of various climate variables, imposes a major burden on climate models. Repeated

initialization with differing starting conditions is intended to reduce uncertainty and biases

surrounding initial parameters. The byproduct is a wide range of projections of key climate

variables (Notz et al., 2020). In addition to such tuning, these simulations require large

amounts of input data and a coupling of various sub-models (Taylor et al., 2012).

The above raises the question whether an approach that is statistical and yet multivariate

can paint a more conciliating picture. This means estimating a statistical system that depicts

the interaction of key variables describing the state of the Arctic. In such a setup, the down-

ward SIE path will be an implication of a complete dynamic system based on the observed

climate record. We provide a formal statistical assessment of different hypotheses about the

historical path of SIE and outline the implications for the future. The effects on Arctic sea ice

arising from various physical processes – and the uncertainty surrounding their estimation

– can both be quantified without resorting to use a climate model.

FEEDBACK LOOPS. Feedbacks are dynamics initially triggered by an external shock to the

system. Such a disturbance can be of radiative nature or not.1 Our analysis aims at bet-

ter understanding how feedback loops – and their interaction with anthropogenic carbon

dioxide (CO2) forcing – shape the response of key Arctic variables, and most notably, sea

ice.2 CO2 forcing is already widely suspected to be the main driver behind long-run SIE

evolution (see Meier et al. (2014), Notz (2017)). Feedback loops are well documented in the

literature (see Parkinson and Comiso (2013), Winton (2013), Stuecker et al. (2018), McGraw

and Barnes (2020)) and their understanding is crucial for enhancing the predictability of the

1In contrast, internal variability, another source of climactic variation, describes fluctuations emerging from
within the climate system (Kay et al., 2015).

2A detailed description of various feedbacks, which the VARCTIC is capable of modeling, can be found in
(Goosse et al., 2018).
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Arctic’s sea ice cover (Wang et al. (2016), Notz et al. (2020)). Only an approach that considers

the interaction of many variables in a flexible way – and thus numerous potential sources

for feedback loops – has a chance to depict a reliable statistical portrait of the Arctic. CMIP6

models consider many variables, but high variation in sea ice projections (see Notz et al.

(2020)) suggests (among other things) widespread uncertainty around how strongly feed-

back loops may amplify external forcing. To shed more compelling statistical light on the

matter, we borrow a methodology from economics.

THE VARCTIC. Our analysis focuses on the evolution of the long-term trajectory of SIE

and the interdependent processes behind it. The modeling approach, which we propose,

achieves a desirable balance between purely statistical and theoretical/structural approaches.

In many fields, statistical approaches often have a better forecasting record than theory-

based models.3 An obvious drawback is that the successful statistical model may provide

little to no explanation of the underlying physical processes.

A Vector Autoregression (VAR) lives in a useful middle ground. It is a statistical model

that yet generates forecasts by iterating a complete system of difference equations in multiple

endogenous variables. These interactions can be analyzed and provide an explanation for

the resulting forecasts. Considering all this, we propose the VAR for the Arctic (VARCTIC), a

statistical approach that (i) can generate long-run forecasts, (ii) can explain them as the result

of feedback loops and external forcing (iii) allows us to analyze how the Arctic responds to

exogenous impulses/anomalies.

ROADMAP. We first discuss the data and its transformation in section 2. We proceed with

discussing the VAR model, its identification and Bayesian estimation in section 3. Section

4 contains the empirical results which comprise (i) a long-run forecast of SIE, (ii) impulse

response functions of the VAR, (iii) an exploration of the transmission mechanism (feedback

loops), and (iv) a conditional forecasting analysis. We conclude and propose directions for

future research in section 5.

2 Data

Our data set comprises eighteen time series, proxying the Arctic’s climate system, and ac-

counting for potential feedback loops among the different constituents. The sample covers

monthly observations from 1980 through 2018. We rely on standard data providers (see

Stroeve and Notz (2018)), which are listed in Table 1 in the appendix. We combine eight

variables, which importance has been highlighted by the existing literature (Meier et al.

(2014)), into VARCTIC 8, our benchmark specification. Fortunately, variables can easily be

3When it comes to September Arctic sea ice, statistical approaches supplanted dynamical models for at least
the last three years, as per the Sea Ice Prediction Network’s Sea Ice Outlook post-season reports (Bhatt et al.,
2019). Statistical models showed much less disparity than theory-based alternatives and, most importantly,
consistently provided a median forecast closer to the realized value.
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added/removed from a VAR. Bayesian shrinkage ensures that a larger model will not over-

fit – the latter aspect is further explained in section 3.5. Therefore, the appendix contains

VARCTIC 18 which includes an additional 10 series from the reanalysis product MERRA2

(Gelaro et al. (2017)) as a robustness check. To summarize compactly, the two specifications

considered in this paper are:

I VARCTIC 8: CO2, Total Cloud Cover (TCC), Precipitation Rate (PR), Air Tempera-

ture (AT), Sea Surface Temperature (SST), Sea Ice Extent (SIE), Sea Ice Thickness (SIT),

Albedo;

II. VARCTIC 18: SWGNT, SWTNT, CO2, LWGNT, TCC, TAUTOT, PR, TS, AT, SST, LW-

GAB, LWTUP, LWGEM, SIE, Age, SIT, EMIS, Albedo.

A comprehensive overview of all variables (including those of VARCTIC 18), their acronyms,

and links to data providers can be found in the appendix in Table 1.4 We want the VARCTIC

to be a credible approximation of a completely endogenous system, where local processes

jointly determine each other, without significant external dependencies outside of forcing.5

Thus, we restrict the spatial coverage to a regional rather than a global scale. In line with

the literature (Notz and Stroeve, 2016), all variables (except CO2, which is measured glob-

ally, and SST, which is measured over the Northern Hemisphere (Horvath et al., 2020)) are

monthly means over all grid-cells between 30◦N and 90◦N latitude. This region matches

the spatial coverage of the Sea Ice Index and is in the neighborhood of the lower bound of

40◦N latitude applied in Horvath et al. (2020).6 It is a legitimate concern that averaging over

too large of a region could wrongfully blend together mid-latitude events with others more

specific to the Arctic circle. Fortunately, all key findings remain unchanged when restricting

the gridded variables of TCC, PR, AT, and Albedo to the 60◦N-90◦N domain. An interesting

avenue for future research is to consider a (larger) VAR where means over various latitude

ranges are included – so to study their interactions and relationship with SIE. Further, we

follow Oelke et al. (2003) and use AT measured at a sigma-level of 0.995, i.e. at 0.995 times

each grid-cell’s surface-level pressure. For its part, the important choice of VARCTIC 8’s

variables themselves (and additions in VARCTIC 18) will be motivated extensively in sec-

tion 3.3.

The raw data is highly seasonal — but the feedback loops we wish to estimate and ex-

trapolate, reside in the (stochastic) trend components and short-run anomalies. Hence, we

4The primary goal was to assemble empirical data on key climate variables. To capture the most prominent
feedbacks on SIE (see Meier et al. (2014)), we augmented the observed series for CO2, SIE, PR, and the assimi-
lated PIOMAS product SIT, with data from model output. Our choice of data series is conditioned on whether
they are (i) operated by well-established climate science institutions (ii) cited in the literature.

5This is precisely what allows us to iterate the system forward (see section 33.2) in order to obtain statistical
forecasts based on a dynamic system.

6Previous studies have emphasized the interdependencies between weather effects in the midlatitudes and
the Arctic (McGraw and Barnes 2018; Screen et al. 2015).
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proceed to transform the data so that the resulting VARCTIC is fitted on deviations from

seasonal means. For our benchmark analysis, we use a simple and transparent transforma-

tion: we de-seasonalize our data by regressing a particular variable yraw on a set of monthly

dummies. That is, for each variable we run the regression

yraw
t =

12

∑
m=1

αmDm + residualt (1)

with yt being defined as yt ≡ yraw
t − ∑

12
m=1 α̂mDm. Dm is an indicator that is 1 if date t is in

month m and 0 otherwise. The estimates of αm, α̂m, are obtained by ordinary least squares.

This is exactly equivalent to de-meaning each data series month by month and is a more

flexible approach to modeling seasonality than using Fourier series.7 Finally, we keep our

filtered data y in levels. We do not want to employ first differences or growth rate transfor-

mations to make the data stationary. Such an action would suppress long-run relationships

which are an important object of interest. Figure 1 in the Appendix shows the data after

being filtered with monthly dummies.8

Pre-processing the data can influence results. Moreover, Diebold and Rudebusch (2021)

and Meier et al. (2014) document seasonal variability in SIE trends. As a natural robust-

ness check, we also consider a very different approach to eliminate seasonality. In appendix

A.6, we reproduce our results with a data set of stochastically de-seasonalized variables ob-

tained from the approach of structural time series (Harvey (1990) and Harvey and Koopman

(2014)). In short, this extension allows for seasonality to evolve (slowly) over time, which

could be a feature of some Arctic time series.

3 The VARCTIC

In this section, we review the VAR: the model; its identification; its Bayesian estimation.

Furthermore, we discuss the construction of the long-run forecasts and impulse response

functions as tools to understand the VARCTICs’ results.

3.1 Vector Autoregressions and Climate

Vector Autoregressions are dynamic simultaneous systems of equations. They can charac-

terize a linear dynamic system in discrete time. The methodology was introduced to macroe-

conomics by Sims (1980) and is now so widely used that it almost became a field of its own

7Of course, if we were using higher-frequency data – like daily observations, then the Fourier approach
would be much more parsimonious and potentially preferable (Hyndman, 2010). The dummies approach to
taking out seasonality only requires 12 coefficients with monthly, but 365 with hypothetical daily data.

8Note that CO2 is available without seasonality from the data provider (NOAA-ESRL) and thus was not
passed through the dummies filter.
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Figure 1: Deseasonalized Series: 8 Variables

(see Kilian and Lütkepohl (2017)). It is a multivariate model in the sense that yyyt in

Ayyyt = Ψ0 +
P

∑
p=1

Ψpyyyt−p + εεεt, (2)

is an M by 1 vector. This means that the dynamic system incorporates M variables. Ψp’s

parameterizes how each of these variables is predicted by its own lags and lags of the M−

1 remaining variables. The matrix A characterizes how the M different variables interact

contemporaneously — e.g., how AT affects SIE within the same month (a time unit t in our
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setup). Finally, the disturbances are mutually uncorrelated with mean zero:

εεεt = [ε1,t, ... , εM,t] ∼ N (0, IM) .

Equation (2) is the so-called structural form of the VAR, which cannot be estimated because

A is not identified by the data. For clarity, the elements of A are not plain regression co-

efficients, but structural model parameters. Attempting to estimate those directly via least

squares would be plagued by simultaneity bias (Kilian and Lütkepohl, 2017). Rather, struc-

tural VAR estimation proceeds in two steps. First, an estimable "reduced-form" VAR is fitted

to the data. That is, we run

yyyt = ccc +
P

∑
p=1

Φpyyyt−p + uuut, (3)

where ccc = A−1Ψ0 and Φp = A−1Ψp are both regression coefficients. uuut are now regression

residuals

uuut = [u1,t, ... ,uM,t] ∼ N (0, Σu)

which are allowed to be cross-correlated. By construction, Σu = A−1′A−1. This last relation-

ship is key to the second, so-called "identification", step. In words, this means the covariance

matrix of regression residuals from the first step (Σu) can be used as raw material to retrieve

the "structural" A — the latter which, as we stressed earlier, cannot be estimated directly.

The process for obtaining A by decomposing Σu is addressed on its own in section 3.3.

The methodology has many advantages over simple autoregressive distributed lags (ARDL)

regression that have gained some popularity in the econometric and climate literature. For

instance, in McGraw and Barnes (2018), the argument for inclusion of lags of the depen-

dent variable can be interpreted as one for completeness of the modeled dynamic system, as

guaranteed by an adequately specified VAR.

3.2 Obtaining Long-Run Forecasts from a VAR

The symmetry of the VAR allows for it to generate forecasts by simply iterating the model.9

Assuming the chosen variables to characterize the system completely, we can forecast its

future state by iterating a particular mapping. To do so, we use a representation that exploits

the fact that any VAR(P) (that is, with P lags) can be rewritten as a VAR(1), using the so-called

9Further, forecasting does not rely on the matrix A.
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companion matrix.10 Thus, obtaining forecasts amounts to iterate

ŶYYt+1 = F(ŶYYt) ≡ κκκ + ΦŶYYt, to obtain ŶYYt+h = Fh(YYYt). (4)

where F is the one-month ahead forecasting function, while κκκ and Φ are the companion-

form analogs of c and Φp’s in (3). This equation provides forecasts of all variables, h periods

from time t. An obvious t to consider is T, the end of the sample. The fact that we can

obtain predictions by simply iterating the system, is of interest to generate scenarios for

the Arctic. First, the prediction will rely on an explainable mechanism – potentially mixing

external forcing and internal feedback loops – rather than a purely statistical relationship.

Second, our forecast does not rely in any way on external data or forecasts made exoge-

nously by some other entity, which would rely on assumptions implicitly incompatible with

ours. Nevertheless, in some cases, it may be desirable to mix some external forecasts/sce-

narios of certain variables (like CO2) that may be less successfully characterized by the VAR.

We consider just that in section 4.4.

3.3 Identification

While conditional and unconditional forecasting are important byproducts of the VARCTIC,

another objective of our analysis is to understand – from a statistical standpoint – the under-

lying process driving interactions between key Arctic variables. For instance, by forecasting

SIE conditional on various emission scenarios, we will later show that anthropogenic CO2

forcing is the main driving force behind the long-run forecast — cutting emissions dramati-

cally would prevent SIE from going to 0.11 This important result rests solely on the reduced-

form VAR. However, to uncover and interpret the mechanism that amplifies CO2’s effect on

SIE, we need an identification scheme for instantaneous relationships. In time series anal-

ysis, the identification problem originates from simultaneity in the data. Multivariate time

series data can tell us whether Xt−1→ Yt or Yt−1→ Xt is more plausible. This is predic-

tive causality in the sense of Granger (1969). However, the data by itself cannot distinguish

Xt→ Yt from Xt← Yt. In words, a single correlation between Xt and Yt can be generated

by two different causal structures. Within the VAR, the problem boils down to the need for

identifying A in equation (2). Yet, the data only procures us with the variance-covariance

matrix of the residuals Σ̂. The identification problem emerges from the fact that A is not

the only matrix satisfying Σ̂u = A−1′A−1. Fortunately, there exist many ways to pin down

a single A matrix without having to delve into too much theory, which is partially respon-

10In short, any VAR(P) in M variables can be rewritten as a VAR(1) in M× P variables, such that the theoret-
ical analysis can be carried out with the less burdensome VAR(1) (Kilian and Lütkepohl, 2017). YYYt are stacked
yyyt−p’s for p = 1, ..., P.

11In contrast, an unconditional forecast lets the VARCTIC generate internally future paths for all variables
(including CO2) without relying on externally developed scenarios.
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sible for the popularity of VARs among applied economists. The strategy we opt for is the

traditional Choleski decomposition of Σ̂u. Mechanically, it provides a lower-triangular ma-

trix C, satisfying Σ̂u = C′C (where C ≡ A−1 for convenience). Its purpose is to transform

regressions residuals ut (equation (3)) into uncorrelated structural shocks εεεt (equation (2)).

This is done by reversing the relationship uuut = Cεεεt. Uncorrelatedness is essential (as further

discussed in section 3.4) to study how the VARCTIC responds to a given impulse, keeping ev-

erything else constant. Such a causal claim would be impossible when considering an impulse

from correlated residuals ut as those always co-move. In other words, studying ut assuming

everything else stays constant is generally inconsistent with the data. In sum, the Choleski

decompostion is one way to transform the observed (but practically useless) ut into the very

useful (but originally unobserved) fundamental shocks εεεt.

The assumption underlying such an approach to orthogonalization is a causal ordering of

shocks. First, it is worth cataloging the relationships, i.e., which get restricted by the ordering

choice and which do not. The dynamics (lead-lag relationships as characterized by Ψ) of

the VAR are exempted as they are already completely identified by the data itself. Rather,

the ordering restricts how variables interact together within the same month, conditional on

the previous state of the system. This is done by making an explicit assumption about the

composition of (reduced-form) deviations of Arctic variables from their predicted values

(i.e., the anomalies). Precisely, the lower-triangular structure of (5) implies that residuals of

a variable at position i are only constituted of structural shocks εεεt of variables ordered before

it. To make that explicit, we report uuut = Cεεεttt in full:


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
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
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. (5)

Only if variable i is ordered below variable j, will a "fundamental" shock to j affect variable

i contemporaneously. Otherwise, variable i will experience the effect of that shock with

a lag of at least one month (which corresponds to one time unit in the application). For

example, the CO2 anomalies (which means, unpredictable by the past behavior of any of the

eight variables) are assumed to be composed of structural CO2 shocks only. This implies

that the effect of other variables on CO2 take at least a month (but perhaps more) to set in.

In contrast, SIE or Albedo anomalies can be composed of a variety of fundamental shocks.

Those restrictions are not without cost as the ordering of the variables may influence our

understanding of the mechanism uncovered by the VARCTIC. This is why the ordering must
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be motivated based on the application at hand.12

MOTIVATING THE ORDERING. It is well established that the melting SIE and the state of

the Arctic environment are both results of exogenous (to other Arctic variables) human ac-

tion (Dai et al. (2019), Notz and Stroeve (2016)). We view the Arctic system as being subject

to feedback loops that may amplify the effect of exogenous shocks way beyond their orig-

inal impact. However, the original stimulus is very likely to be anthropogenic, given that

without the unprecedented increase in CO2 emissions and subsequent rise in global temper-

ature, none of these mechanisms would have been so evident in effect (Amstrup et al. (2010),

Melillo et al. (2014)).13 Consequently, we order CO2 first. The implication is that shocks to

any of the other variables can impact CO2 with a minimal delay of one month. In contrast,

CO2 can impact any variable in the system either contemporaneously, in the short/medi-

um/long run, or both.

In the spirit of many medium to large BVAR applications to macroeconomic data (Bernanke

et al. (2005), Christiano et al. (1999), Stock and Watson (2005) and Bańbura et al. (2010)), we

classify the variables, describing the internal climate variability, into fast-moving and slow-

moving ones. TCC, PR and AT are classified as fast-moving. Absorbing short- and longwave

radiation, clouds have a significant impact on the earth’s energy balance and thus its overall

heat content (Carslaw et al., 2002). But clouds eventually carry precipitation with not un-

ambiguously determined effects on SIE (Parkinson and Comiso (2013), Meier et al. (2014)).

We order both variables before the temperature variables AT and SST. Besides AT, also SST,

especially warmer water from the Atlantic Ocean, contributed to shaping the historically

unprecedented decline of SIE over the last four decades (Meier et al., 2014). Here we follow

Parkinson and Comiso (2013) who state that besides the cooling effects of a melting ice cover,

SST is highly influenced by currents and winds, transferring warmer energy from lower to

higher latitudes. We therefore place SST at the boundary of fast- and slow-moving variables.

The last block of variables comprises, SIE, SIT, and Albedo. SIT is an underestimated

determinant of how SIE reacts to both external forcing and internal variability (Meier et al.

(2014), Parkinson and Comiso (2013)). Thicker layers make the ice more resilient and in-

crease Albedo, while thin ice is more easily advected by winds, making SIE more sensitive

to extreme events (Meier et al., 2014). We order SIT – and Albedo – after SIE because we

hypothesize that the effect of shocks of the former can only influence the latter with a cer-

tain delay. For instance, shocks to SIT via increased water precipitation or strong winds will

immediately reduce SIT but SIE only with a certain lag. Lastly, we regard Albedo as being

driven contemporaneously by all other factors.

To wrap up, it is worth re-emphasizing that identification, via the described ordering, is

12Moreover, when possible, the robustness of results to some reasonable alterations of the ordering should
be assessed.

13Meier et al. (2014) give an in-depth description of the various internal factors, their mutual interaction and
their response to carbon dioxide.
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necessary to interpret and understand the mechanisms captured by the VARCTIC. However,

ordering choices do not alter forecasts. Mechanically, this happens because the potentially

contentious matrix A does not enter the forecasting equation (4).

ON POTENTIALLY EXCLUDED MECHANISMS. We consider VARCTIC 18 in part to confirm

that the key channels are already accounted for in VARCTIC 8. For example, studies have

emphasized the role of incoming long- and shortwave radiation and their interactions with

SIE and SIT (see Burt et al. (2016), Dai et al. (2019)). The impact of downwelling longwave

radiation (DLW) on SIE is not direct, but transmitted via DLW’s influence on AT. Here, thick-

ness of sea ice is crucial, as thinner ice is more susceptible to DLW than thicker layers (Park

et al., 2015). As we will show later (like in figure 9), accounting for both short- and longwave

radiation in VARCTIC 18, the forecast of an ice-free Arctic deviates only marginally from the

ice-free date projected by VARCTIC 8. This result suggests that short- and longwave ra-

diation does not impact SIE directly, but rather affects the evolution of the Arctic’s sea ice

cover via other variables (e.g., AT and SIT), which VARCTIC 8 already accounts for. In a

similar line of thought, upper-ocean heat-content may also influence to the evolution of SIE.

Studies have found that anomalies in the temperature of the upper-ocean layers and anoma-

lies in SST do coincide (Park et al., 2015), making an extension of both VARCTIC models

dispensable.

However, it is not excluded that some non-local processes (e.g., poleward atmospheric

heat transport) do contribute to sea-ice loss through channels not represented in both VARC-

TICs. As stated earlier, we opted for including local processes only (in addition to CO2)

because this makes the VARCTIC a complete system where all M variables are internally

modeled and forecasted jointly. Adding non-local processes raises the additional question

of how to model their external dependence, a complication left for future research.14

3.4 Impulse Response Functions

Since Sims (1980), the dominant approach for studying the properties of the VAR around its

deterministic path has been impulse response functions (IRFs) to structural shocks. Thanks

to the orthogonalization strategy discussed in 3.3, we converted plain regression residuals

into orthogonal shocks.15 The dynamic effect of these specific disturbances (the impulse) can

be analyzed as that of a randomly assigned treatment.16 Uncorrelatedness of εm,t implies

the "keeping everything else constant" interpretation – hence, a causal meaning for IRFs – is

guaranteed by construction.

It is natural to wonder about the meaning of uncorrelated shocks in a physical system.

14The literature on Global VARs could provide a natural place to start (Pesaran et al., 2009).
15Mathematically, we took a linear combination of the VAR residuals (an unpredictable change in a variable

of interest, uuut) such that uuut = Cεεεttt.
16Of course, one could look at how the system responds to an impulse from a residual um,t, but the interpre-

tation will be rather weak because those are correlated across equations.
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Mechanically, these shocks are the difference between the realized state of a variable and

its predicted value as per the previous state of the dynamic system. These unpredictable

anomalies, which emerge from outside a well-specified VARCTIC, are the key to under-

standing the dynamic properties of the model. A now obvious example of a shock will be

that of CO2 emissions reduction in 2020: it is inevitable that the observed emissions will

be lower than what was predicted by the endogenous system since the latter excludes "pan-

demics". Any model that is partially incomplete will be subject to external shocks. The study

of such exogenous impulses may be alien-sounding, especially when contrasted with the de-

terministic environment of a climate model. Nonetheless, understanding the properties of

a climate model by conditioning on a particular RCP scenario is equivalent to conditioning

on a series of shocks. Hence, one can understand the VARCTIC and its IRFs as expand-

ing the number of potentially exogenous sources of forcing. Of course, our later focus on

CO2 shocks is expressively motivated by the fact that the latter is a well-accepted source of

exogenous forcing in climate systems.

The impulse response function of a variable m to a one standard deviation shock of εm̃,t

is defined as

IRF(m̃→ m, h) = E(ym,t+h|yyyt, εt,m̃ = σεm̃)− E(ym,t+h|yyyt, εt,m̃ = 0). (6)

Thus, it is the expected difference, h months after "impact", between an Arctic system that

responded to an unexpected CO2 increase, and the same system where no such increase

occurred. In a linear VAR with one lag (P = 1), the IRF of all variables can easily be computed

from the original estimates using the formula

IRF(m̃→ mmm, h) = Ψh A−1em̃ (7)

where em̃ is a vector with σεm̃ in position m̃ and zero elsewhere. This just means that we are

looking at the individual effect of εm̃ while all other structural disturbances are shut down.17

The latter discussion focused on analyzing how our dynamic system responds to an ex-

ternal/unforeseeable impulse, which is a standard way of interpreting VAR systems. Of

course, we are also interested in the "systematic" part of the VAR that is responsible for the

propagation of shocks when they do occur – the IRF transmission mechanism. In section

4.3, we focus our attention on CO2 and AT shocks and quantify the amplification effect of

different channels.

17In the case of a linear VAR with P > 1 lags, we must use the companion matrix form. The relevant formula
(equation (A.4)) can be found in the discussion of appendix A.2.
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3.5 Bayesian Estimation

We use a Bayesian VAR in the tradition of Litterman (1980). There are two crucial advan-

tages of doing so. First, Bayesian inference does not depend on whether the VAR system

is stationary or not (Fanchon and Wendel (1992)). We are effectively modeling variables in

levels and expecting at least one explosive root. Frequentist inference is notoriously compli-

cated in such setups (Choi (2015)) and even standard approaches for non-stationary data

have well-known robustness problems (Elliott (1998)). From a practical point of view, using

non-stationary data means that standard test statistics (like Granger Causality tests) will be

undermined by faulty standard errors, potentially leading to erroneous conclusions.

Second, for us to consider a system of many variables estimated with a relatively small

number of observations, Bayesian shrinkage can be beneficial to out-of-sample forecasting

performance and help in reducing estimation uncertainty (like those of IRFs). In fact, VARs

are known to suffer from the curse of dimensionality as the number of parameters scales up

very fast with the number of endogenous variables.18 Via informative priors, Bayesian in-

ference provides a natural way to impose soft/stochastic constraints (that is, constraints are

not imposed to bind) and yet keep inference possible (Bańbura et al., 2010).19 Furthermore,

we are interested in transformations (forecasting paths, impulse response functions) of the

parameters rather than the parameters themselves. Inference for such objects can easily be

obtained by transforming draws from the posterior distribution. All these procedures are

well established in the macroeconometrics community and packages are available in most

statistical programming software (Dieppe et al., 2016). An extended discussion of the prior,

its motivation for time series data and details on the exact values of (data-driven) hyperpa-

rameters used, can all be found in section A.3.

Finally, the maximal lag order of the VAR, P in equations (3) and (2), must be chosen.20

Its selection is yet another incarnation of the bias-variance trade-off. We fix the number of

lags in VARCTIC 8 to P = 12 and to P = 3 in VARCTIC 18 respectively. That choice is based

on the Deviance Information Criterion (DIC) – the Bayesian analog to popular information

criteria used for model selection. Accordingly, the superior VARCTIC 8 would set P = 3

(DIC=-6988)21, a choice which only provides a marginal improvement with respect to P = 12

(DIC=-6894).22 Since structural analysis is an essential part of this paper, we err on the side

of having slightly higher variance, but potentially richer dynamics for IRFs. In the large

VARCTIC 18, the need for shrinkage is magnified and P = 3 is the obvious more reasonable

choice.

An extraneous question, which can benefit from verification by DIC, is whether trends

18Such a situation motivates McGraw and Barnes (2020) to use the LASSO.
19For instance, running a VAR with LASSO would induce some form of shrinkage but inference is far from

easy.
20To re-emphasize, this means yt−p for p = 1, ..., P are included.
21The lower, the better.
22Additionally, the reported DIC for P = 12 is superior to other natural candidates such as P = 1 and P = 24.
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should be included. We hypothesize that VARCTIC 8 is a complete, divergent system which

can endogenously explain the trending behavior of all its variables by the joint action of

CO2 forcing and feedback loops. If that were not to be true, including linear trends would

noticeably improve model fit, and lower the DIC even further. Backing our claim that the

VARCTIC needs no additional (and hardly climatically-explainable) statistical crutch, the

DIC from including trends is worse (now DIC=-6817 for VARCTIC 8) than that of the original

model.

4 Results

A VAR contains many coefficients – there are 8× (8× 12 + 1) = 776 in the baseline VARC-

TIC.23 Staring at them directly is unproductive and a single coefficient (or even a specific

block) carries little meaning by itself. As it is common with VARs in macroeconomics, we

rather study the properties of the VARCTIC by looking at its implied forecasts and its IRFs.

4.1 The "Business as Usual" Forecast

We report here the unconditional forecast of our main VARs. VARCTIC 8 suggests SIE to hit

the zero lower bound around 2060 (see Figure 2), whereas VARCTIC 18 projects the Arctic

to be ice-free at about the same time (see Figure 9).24 The shaded area shows 90% of all

the potential paths of the respective VARCTIC. That is, VARCTIC 8 dates the Arctic to be

totally ice-free for the first time somewhere between 2052 and 2073 with a probability of

90%. VARCTIC 18 slightly extends that time frame to the year 2079.

For the two models, the median scenario has SIE being less than 1 times 106 km2 by 2054

and 2060 respectively. The 1 times 106 km2 is more likely an interesting quantity since the

"regions north of Greenland/Canada will retain some sea ice in the future even though the

Arctic can be considered as ’nearly sea ice free’ at the end of summer." (Wang and Over-

land (2009)). The corresponding credible regions mark the period 2047-2065 for VARCTIC 8

and 2047-2069 for VARCTIC 18 respectively. These dates and time spans range in the close

neighborhood of previous climate model simulations (see Jahn et al. (2016)). For both VARC-

TICs, less than 5% of the simulated paths hit 0 before 2050, making it an unlikely scenario

according to our calculations. In essence, the two models suggest SIE melting at a rate that

is slower than Diebold and Rudebusch (2021)’s results, but much faster than most CMIP5

models (Stroeve et al., 2012), and in line with the latest CMIP6 calculations (Notz et al.,

2020).25

23The same arithmetic gives a total of 990 parameters in VARCTIC 18.
24We include in the graph the in-sample deterministic component of the VAR (as discussed in Giannone et al.

(2019), which is essentially a long-run forecast, starting from 1980 (the same sort of which we are doing right
now for the next decades) using the VAR estimates of 12 lags.

25Note that augmenting VARCTIC 8 with other greenhouse gases such as methane (CH4) procures near-
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Figure 2: Trend Sea Ice Extent for September.
Shade is the 90% credible region.

Nonetheless, it is natural to ask how much we can trust a forecast made 40 years ahead,

based on 40 years of data behind. To a large extent, answering this amounts to catalog what

types of uncertainty the 90% credible regions incorporate, and those they do not. These re-

flect both forecasting uncertainty (the presence of shocks) and parameter uncertainty. The

latter means the 90% regions reflect what happens to the spread of forecast paths when

small disturbances are incorporated in the (estimated) coefficient matrix. In other words,

those bands conveniently (and correctly) quantify prediction uncertainty accounting for the

fact that we are iterating something that is estimated. All things considered, uncertainty is

correctly calibrated as long as the model is correctly specified. As it is the case with any

statistical approach, the VARCTIC necessarily assumes that the physical reactions estimated

on previous decades’ data remain valid for those to come. Thus, if the future holds unprece-

dented nonlinear mechanisms or previously undetectable relationships26, the VARCTIC can

hardly accommodate for that. In contrast, any intensification of phenomena characterized

by our 8 key variables (like Albedo feedback) should be successfully captured out-of-sample.

With VARCTIC results being in accord with the recent CMIP6 consensus, our specification

seems to capture the main drivers and dynamics of the Arctic ecosystem.27 Finally, future

CO2 emissions are an uncontested source of uncertainty for long-run SIE forecasts. Section

4.4 studies how those (and their credible regions) behave under standard forcing scenarios.

identical results (i.e., forecasting and forthcoming IRFs). This reinforces the view that CO2 plays a distinct and
important role in determining the fate of SIE.

26Notz and Stroeve (2016) find that in nearly all CMIP5 models the negative relationship between CO2 and
SIE was not prevalent until the second half of the twentieth century.

27Though, we acknowledge recent research, which stresses the role of ozone depleting substances (ODS) –
another form of anthropogenic greenhouse gases – in the warming of the Arctic region over the last decades
(Polvani et al., 2020).

14



4.2 Impulse Response Functions

Figure 3 displays impulse response functions – the response of SIE to a positive shock of one

standard deviation to any of the model’s M variables. To reflect parameter uncertainty, we

additionally report the 90% credible region for each IRF. This means the gray bands contain

90% of the posterior draws from VARCTIC 8. Those are crucial to determine whether the

attached IRFs describe significant physical phenomena or not. Particularly, when the credi-

ble region extends to both positive and negative sides, the IRF characterizes a phenomenon

of negligible importance. In those instances (e.g., many IRFs at horizon h > 24 months), the

posterior mean’s (black line) difference from 0 could merely be due to parameter uncertainty,

and can be thought of as approximately 0.

The resulting impact of CO2 anomalies on SIE is sizable and most importantly, durable.

While the sign of the response is highly uncertain and weak for more than a year, CO2

shocks emerge to have a lasting downward effect on SIE. The relevance of the CO2/SIE

relation is not a surprise (Notz and Stroeve (2016)). Moreover, this behavior is distinct from

other shocks that rather have a significant short-run effect but no significant effect after more

than roughly six months. More precisely, the effect of CO2 impulses more than a year to

settle in (not significant for approximately 15 months) but ends up having a continuing

downward effect on trend SIE of approximately -0.005 106 km2. This mechanically implies

that a one-off CO2 deviation from its predicted value/trend leads to a cumulative impact that

is ever increasing in absolute terms (as displayed later in Figure 4(b)). It is important to

remember that this is the effect of an unexpected increase in CO2 which is to be contrasted

with the systematic effect that will be studied later. However, in the framework of this

section – where CO2 is allowed to endogenously respond to Arctic variables – this is as

close as one can get to obtain an experimental/exogenous variation needed to evaluate a

dynamic causal effect. -0.005 106 is roughly 0.1% of the last deterministic trend value of SIE.

CO2 shocks, by construction of our linear VAR, have mean 0 and there are approximately

as many positive and negative shocks in-sample. The linearity and symmetry of the VAR

imply that these durable effects are present for both upward and downward deviations from

the deterministic trend.

Other shocks have sizeable impacts that eventually vanish, which is the traditional IRF

shape one would expect to see from a VAR on macroeconomic data. For instance, AT and

Albedo IRFs clearly have the expected sign. However, they do not have the striking lasting

impact of CO2 perturbations. To rationalize the short-lived IRF(AT→ SIE), it is worth re-

emphasizing what is meant by an AT shock. It is an AT anomaly that is not explicable by

(i) the previous state of the system and (ii) other structural shocks ordered before it (CO2,

TTC, PR). As an example, one could think of the 2007 record low SIE (at that time) being

attributed to an abnormally high “atmospheric flow of warm and humid air” from lower

latitudes into the Arctic region (Graversen et al., 2011). As we will see in section 4.3, a CO2
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Figure 3: IRFs: Response of Sea Ice Extent.
Shade is the 90% credible region.

shock triggers (with a significant delay) a persistent increase in AT, which eventually impacts

SIE downward through the systematic part of the VAR. Thus, the short-lived response of SIE

to AT shocks does not rule out a lasting impact of AT on SIE. Rather, it means that when it

occurs, the origin of the anomaly is not AT itself, but likely CO2.

Similar to an unforeseeable AT shock, a one-time Albedo shock will not have a lasting

effect on SIE neither. This does not preclude Albedo to amplify other shocks as we will

see in the next section.28 Finally, a rightful concern is whether IRFs remain unaltered upon

sensibly altering the ordering of section 3.3. To a large extent, they do. For instance, placing

28For a discussion of VARCTIC 18 results, see section A.5.
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(a) Shock of CO2 on SIE (b) Shock of CO2 on SIE - cumulative

(c) Shock of AT on SIE (d) Shock of AT on SIE - cumulative

Figure 4: IRF Decomposition: Response of Sea Ice Extent.
Shade is the 90% credible region for the original IRF.

SST and AT before TCC and PR brings no noticeable change. So does moving Albedo from

last to second (see section A.4).

4.3 Amplification of CO2 and Temperature Shocks by Feedback Loops

The melting of SIE is happening much faster than many other phenomena that are also be-

lieved to be set in motion by the steady increase of CO2 emissions. Many recent papers (Notz

and Marotzke (2012), Wang and Overland (2012), Serreze and Stroeve (2015), Notz (2017))

argue with theory/climate models or correlations that external CO2 forcing is responsible

for the long-run trajectory of SIE. Some of these findings led Notz and Stroeve (2016) to

conclude that climate models severely underestimate the impact of CO2 on SIE.

A rather consensual view is that the very nature of the Arctic system leads to the amplifi-

cation of such external forcing shocks. An understanding – from observational data – on how
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the Arctic may amplify – or not – certain external forces is still pending. Fortunately, a VAR

can quantify the contribution of different variables in explaining how a dynamic system

responds to an external impulse.

4.3.1 Methodology

A potential approach that has a long history in econometrics is the use of Granger Causality

(GC) tests. Those consist of evaluating predictive causal statements (such as Xt−1→ Yt and

Yt−1 → Xt) via significance tests in time series regressions. They have been recently advo-

cated for climate applications by McGraw and Barnes (2018). Nevertheless, those tests often

fall short of answering questions of interest. First, the meaning of the test is not obvious

when more than two variables are included and/or if one is interested in multi-horizon im-

pacts. Second, in the wake of a GC test rejection, the block of reduced-form coefficients29,

which we know to be of some statistical importance, are very hard to interpret. In other

words, we know some channel matters, but we have little idea how it matters.30

In light of the above, we rather opt for IRF Decomposition. As the name suggests, the

physical reaction characterized by IRFs will be decomposed as a sum of transmission chan-

nels, which contributions’ magnitudes and signs are directly informative. Less abstractly,

the consequential negative response of SIE to CO2 shocks is likely composed of a direct ef-

fect and many entangled indirect effects (e.g., that of AT and Albedo). Understanding those

in the dynamic setup of a VAR is much more intricate than in a static regression setting. This

is so because IRFs – for horizons greater than one – are obtained by iterating predictions,

which means X can impact Y through Z, but also through any of its lags. We employ a

strategy that has been used in macroeconomics to better understand the transmission mech-

anism in VARs. It consists, rather simply, of shutting down "channels" and plotting what

the response to a shock would be, given that this very channel had been shut (Sims and Zha

(2006), Bernanke et al. (1997), Bachmann and Sims (2012)). We can deploy this methodol-

ogy to find and quantify the most important channels through which CO2 and temperature

shocks impact SIE.

4.3.2 Amplification of CO2 Shocks

For VARCTIC 8, figures 4(a) and 4(b) show the responses of SIE to an unexpected increase

in one standard-deviation of CO2. The blue line pictures the case of the baseline VARCTIC

8 with 90% credible region. The remaining six lines show the response of SIE to the same

shock but shutting down key transmission channels. In terms of implementation, it consists

29Precisely, we mean coefficients on lags of Xt in a regression of those on Yt (including lags of Yt as well).
30Similar concerns led us to discard Liang (2014)’s quantitative causality since the currently available for-

mula only applies to bivariate systems. Further, it does not allow for contemporaneous relationships which
are clearly present in our application (and a feature of almost any discretely sampled multivariate time series).
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of imposing hypothetical shocks to one of the other variables which off-sets their own response

to a CO2 shock.31

The top panel of figure 4 reveals – without great surprise – the importance of temperature

(especially AT) in translating CO2 anomalies into decreasing SIE. That is, we observe that

shutting down these channels leads to a smaller absolute response which means that those

variables can be considered as amplification channels. Given the atypical shape of the CO2 IRF,

the scale of figure 4(a) makes less visible the action of channels that only alter the longer-run

effect. Since those effects are durably negative (at different levels), their cumulative effect

will more clearly reveal their relative importance. Thus, figure 4(b) displays the cumulative

impact of selected (more important) channels. The two temperature channels are responsible

for approximately one fourth of the cumulative effect of CO2 on SIE after 3 years. More

precisely, restricting temperature variables to not respond to a positive CO2 shock, decreases

(in absolute terms) the after-3-years impact from -0.13 106 km2 to -0.1 106 km2. Of course, it

was expected that temperature should be a major conductor of such shocks. We also observe

similar quantitative effects for both SIT and Albedo in isolation. Most strikingly, we find that

the conjunction of the Albedo and SIT amplification channels is responsible for amplifying

the effect of CO2 shocks by a non-negligible 50%.

The Albedo-amplification matches evidence reported in several studies (see Perovich and

Polashenski (2012), Björk et al. (2013), Parkinson and Comiso (2013)) using various different

methodologies. In contrast, our results for SIT-amplification contribute to a literature where

a consensus has yet to emerge. The ice-growth-SIT feedback describes the observation that a

thinning of the sea ice cover induces more rapid ice formation during winter, a compensating

effect which slows down melting (Bitz and Roe, 2004; Goosse et al., 2018). Other studies have

emphasized the positive feedback between SIT and SIE, where a thinning ice cover further

accelerates melting by being less resilient to climate forcing (Parkinson and Comiso, 2013;

Kwok, 2018). Our results unequivocally support the latter to be most empirically preva-

lent.32 Nearly identical results are obtained when using AT, Albedo, PR, and TCC averaged

between 60◦N and 90◦N latitude, suggesting most (if not all) of the action comes from higher

latitudes – hence our focus on local processes when explaining those results.

This section focused on how and why SIE responds to CO2 shocks. In section 4.4, we

rather look at the effect of the systematic increase of CO2 level.

4.3.3 Amplification of Air Temperature Shocks

AT-shocks are movements in AT that are not predictable given the past state of the system

and are orthogonal to other shocks in the system, most notably CO2. In other words, we are

31See Bachmann and Sims (2012) for details.
32It is plausible that the ice-growth-SIT feedback explains why both IRF(SIT→ SIE) (figure 3) and SIT’s

influence on IRF(CO2 → SIE) (figure 4) take over 6 months to completely settle in — its seasonal character
dampens the (early) positive feedback effect.
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looking at the effect of unexpected higher/lower AT that is uncorrelated with other shocks

in the system. As we saw in figure 3, such AT anomalies have a pronounced short-run effect

on trend SIE for no longer than ten months after the shocks. This means that unlike CO2, the

cumulative effect of AT disturbances stabilizes about 1.5 years after the event.

In figure 4(c), we clearly observe (again) an important role for the thinning of ice and

the Albedo effect amplifying the response of SIE to AT shocks. In fact, we see in figure 4(d)

that without them, the long-run impact is the same as the instantaneous one. Thus, this

is evidence to suggest that the AT shock’s long-run cumulative impact of -0.24 106 km2 is

mostly a result of the action of feedback loops.

4.4 Forecasting SIE Conditional on CO2 Emissions Scenarios

If CO2’s trend is mostly or solely affected by factors outside of those considered in the VAR,

the forecast of SIE can be improved by treating CO2 forcing as exogenous and using an exter-

nal forecast rather than the one internally generated by the VAR. Conditional forecasting can

be achieved in VARs following the approach of Waggoner and Zha (1999). As we will see,

this will markedly sharpen the bands around our forecasts, suggesting that a great amount

of uncertainty is related to the future path of CO2 emissions. Additionally, this brings the

VARCTIC conceptually closer to standard analyses on the future of the Arctic (Stroeve et al.

(2012), Stroeve and Notz (2018), Notz et al. (2020)).

In the spirit of Sigmond et al. (2018), who constrain the levels of AT in their climate

model, we will look at CO2 emissions under three different representative concentration

pathways (RCP) and investigate their impact on the evolution of Arctic sea ice. Figure 1

shows a steady increase in CO2 emissions over the last three decades, but several RCPs paint

different pictures for the trajectory of carbon emissions until the end of the century. Figure 5a

shows the different paths of CO2 under RCP 2.6, RCP 6, and RCP 8.5, as well as the projected

path following VARCTIC 8. Most interestingly, we find our completely endogenous and

unconditional forecast of CO2 to lay somewhere between the "very bad" RCP 8.5 scenario

and the "business-as-usual" RCP 6 one.

Figure 5b shows VARCTIC 8’s projection of Arctic SIE when conditioning the out-of-

sample path of CO2 on the three different RCP scenarios. For reference, the figure also

includes projected SIE with the future path of CO2 endogenously determined within the

model, as discussed above. The pictured effect is dramatic: if emissions were reduced as to

follow the RCP 2.6 scenario, whose CO2 emissions are still at the higher boundary of what

the Paris Agreement demands, the Arctic would be far from blue and even recover earlier

losses by the end of the century. If emissions follow the more likely RCP 6, SIE would van-

ish later than projected by the unconditional VARCTIC 8, but would still be completely gone

during the 2070’s. In the worst-case scenario, RCP 8.5, we obtain an ice-free September by the

mid-2050’s. Interestingly, this result is very close to what Stroeve and Notz (2018) reported
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(a) Evolution of CO2 emissions until the End of the Century under different Scenarios

(b) Evolution of SIE under different Scenarios of CO2

Figure 5: VARCTIC Projections & Different RCPs.
Shade is 90% credible region.

using a very different methodology (extrapolating a linear relationship). Their bivariate (SIE

and CO2) analysis suggests the Arctic summer months to be ice-free by 2050. However, in

contrast, our results are much more optimistic than theirs in terms of SIE conditional on

the (rather unlikely) RCP 2.6 scenario. Such analysis is not conditional on the identification

scheme since it is based solely on the reduced form.33 Overall, these results reinforce the

33Important to note is the fact that the very last in-sample observations for CO2 even range above the RCP
8.5 values, which generates the slight upward jump in case of the latter scenario.
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view that anthropogenic CO2 is the main driver behind the current melting of SIE as well

as the main source of uncertainty around the future SIE path. Furthermore, the optimistic

RCP 2.6 results suggest that internal variability by itself cannot lead to the complete melting

of SIE, even when starting from today’s level. Overall, the VARCTIC yields similar conclu-

sions about the importance of CO2 to that of Dai et al. (2019) and Notz and Stroeve (2016).

It is reassuring to see that climate models’ conclusions can be corroborated by a transpar-

ent approach that relies solely and directly on the multivariate time series properties of the

observational record.

4.5 Amplification Effects in the Projection of SIE under different RCPs

The previous section documented the evolution of SIE conditional on several CO2 trajecto-

ries, treating the latter as an exogenous driver. This section seeks to quantify the importance

of feedback effects when it comes to translating an RCP path into SIE loss. That is, we at-

tempt to quantify to which extent the Albedo- and SIT-effects can be held responsible for

amplifying the impact of CO2 forcing and thus accelerating the melting of SIE.

Following the findings of section 4.3, in which we identified SIT and Albedo to carry

potential for mitigating the adverse influence of CO2 on SIE, we ask the question about how

SIE would evolve, if SIT and Albedo were to remain constant at a certain level over the

forecasting period. In particular, we repeat the forecasting exercise of the previous section

for all three RCP scenarios, but keep SIT and Albedo constant until the end of the forecasting

period. For both variables we set the level equal to the value, which is given by the series’

deterministic component at the end of the sample period. By doing so, we create artificial

shocks to both SIT and Albedo in each forecasting step, which off-set their response to the

external forcing variable. As we are modeling a dynamic and interconnected system, these

shocks do affect all the other variables (except for CO2 on which we condition our forecast).

Figure 6 documents the corresponding results for RCP 8.5, RCP 6 and RCP 2.6. For each

scenario, we show three different cases: (i) the projection of SIE under the respective RCP;

(ii) the evolution of SIE under the respective RCP while keeping Albedo constant at its last

in-sample deterministic value; (iii) the projection of SIE while keeping both Albedo and SIT

constant at their last respective deterministic value. The latter are shown to be undeniable

accelerants. First, fixing Albedo to its 2019 value and thus shutting down this particular

long-run amplification effect postpones the date of reaching 1× 106 km2 by a bit less than

a decade under both RCP 8.5 and RCP 6. Arctic sea ice thickness plays a major role for

the reaction and resilience of SIE to anthropogenic forcing. Figure 6 re-enforces this view by

showing that preventing both SIT and Albedo from further decay could potentially postpone

the zero-SIE event to the next century under RCP 6. Under RCP 8.5, shutting down both

amplification channels starting from 2020 leads to SIE crossing the bar of 1× 106 km2 about
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a decade later.34 This feeds into the pictured non-linearity and acceleration of SIE loss and

provides a potential justification for the finding in Diebold and Rudebusch (2021) that a

quadratic trend is a preferable approximation of long-run summer months’ SIE evolution.

5 Conclusion and Directions for Future Research

We proposed the VARCTIC as a middle ground alternative to purely theoretical or statistical

modeling. It generates long-run forecasts that embody the interaction of many key variables

without the inevitable opacity of climate models. First, we focus our attention on how the

Arctic system responds to exogenous impulses and propagates them. Our results show that

CO2 anomalies have an unusually lasting effect on SIE which takes about a year to settle

in. It is the only impulse that has the property of durably affecting SIE. Albedo and SIT are

shown to play an important role in amplifying the response of SIE to CO2 and AT shocks.

In both cases, the conjunction of the two effects can double the cumulative impact of such

shocks after two years.

Second, we focus on the systematic/deterministic part of the VARCTIC and conduct

conditional forecasting experiments that again seek to quantify the effect of anthropogenic

CO2 and how feedback loops can amplify it. We condition on the future path of CO2 and

show that, within the context of our model, it is the prime source of uncertainty for the long-

run forecast of SIE. RCP 8.5 implies 0 September SIE around 2054, RCP 6 says so around 2075

and finally, RCP 2.6 (∼ Paris Accord) implies that such an event would never happen. We

conclude the analysis by evaluating to which extent internal knock-on effects can amplify

the long-run effect of CO2 forcing. Our results provide statistical backing for the view that

CO2 shocks trigger feedbacks of other climate variables (as characterized here by Albedo

and SIT), which substantially accelerate the speed at which SIE is headed toward 0.

There are many methodological extensions within the VAR paradigm that could be of in-

terest for future cryosphere research. For instance, Smooth-Transition VARs (with a popular

application in Auerbach and Gorodnichenko (2012)) could be used to accommodate for dy-

namics evolving over the seasonal cycle. Additionally, Screen and Deser (2019) remark the

importance of changing weather phenomena that transition through decadal cycles, such as

the pacific oscillation. Time-varying parameters VARs could evaluate the quantitative rele-

vance of such phenomena. Finally, some recent attention (Chavas and Grainger (2019)) has

been given to the potentially non-linear relationship between CO2 and SIE. Methods that

blend time series econometrics and Machine Learning of the like in Goulet Coulombe (2020)

could reveal interesting insights on complex/time-varying relationships in the Arctic.

34The graphs are cut at the 1× 106 km2 bar as keeping SIT constant (which the thought experiment suggests)
is untenable as SIE approaches 0: SIT cannot be constrained to be positive if SIE is 0.
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(a) RCP 8.5

(b) RCP 6

(c) RCP 2.6

Figure 6: Conditional Forecasts with and without Feedback
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A Appendix

A.1 Data Sources

Table 1: List of Variables

Abbreviation Description Data Source

Age Gridded monthly mean of

Sea Ice Age

EASE-Grid Sea Ice Age, Version 4

AT Gridded monthly mean of

Air Temperature

NCEP/NCAR Reanalysis 1: Sur-

face

Albedo Gridded monthly mean of

Surface Albedo

MERRA-2

CO2 Global monthly mean of CO2 NOAA - Earth System Research

Laboratories

LWGAB Gridded monthly mean of

Surface Absorbed Longwave Radiation

MERRA-2

LWGEM Gridded monthly mean of

Longwave Flux Emitted from Surface

MERRA-2

LWGNT Gridded monthly mean of

Surface Net Downward Longwave Flux

MERRA-2

LWTUP Gridded monthly mean of

Upwelling Longwave Flux at TOA

MERRA-2

PR Gridded monthly mean of

Precipitation

CPC Merged Analysis of Precipi-

tation (CMAP)

SST Median northern-hemispheric mean Sea-Surface

Temperature anomaly (relative to 1961-1990)

Met Office Hadley Centre

SIE Gridded monthly mean of

Sea Ice Extent

Sea Ice Index, Version 3

SWGNT Gridded monthly mean of

Surface Net Downward Shortwave Flux

MERRA-2

SWTNT Gridded monthly mean of

TOA Net Downward Shortwave Flux

MERRA-2

TAUTOT Gridded monthly mean of

In-Cloud Optical SIT of All Clouds

MERRA-2

SIT Gridded monthly mean of

Sea Ice Thickness

PIOMAS

TCC Gridded monthly mean of

Total Cloud Cover

NCEP/NCAR Reanalysis

Monthly Means and Other

Derived Variables

TS Gridded monthly mean of

Surface Skin Temperature

MERRA-2

Notes: The above series (before any transformation) are gathered in one file here.
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https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html
https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html
https://nsidc.org/data/g02135
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.otherflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.otherflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.otherflux.html
https://disc.gsfc.nasa.gov/datasets/M2TUNXRAD_5.12.4/summary?keywords=merra-2
https://philippegouletcoulombe.com/code


A.2 Transmission Mechanism Analysis for a Shock to SIE

The purpose of the TMA analysis is to assess how the response of variable i to a shock on

variable j changes, if a third variable z were immune to the shock generated by variable

j. Here we follow Sims (2012) by differentiating between the direct and indirect effect. The

former is variable i’s own response to the shock hitting variable j. However, the shock also

affects variable z, which itself transmits the shock further to variable i. This channel is the

indirect effect of a shock to variable j on the response of variable i. Hence, it is the latter that

will explain the role of variable z within the transmission channel of a shock to j on i. To

do so, Sims (2012) introduce artificial shocks to variable z, which offset its own response to a

shock to j. These artificial shocks have two effects: (i) the IRF of variable z will be zeroed over

the whole IRF horizon; (ii) the indirect channel transmits the artificial shock onto variable i

and allows to identify the direct effect of j on i.

This procedure requires the transformation of the structural VAR, given in equation (2)

into the reduced form VAR of equation (3), which reads as follows:

yyyt = ccc +
P

∑
p=1

A−1Ψpyyyt−p + A−1εεεt , (A.1)

where A−1 is the Cholesky decomposition of matrix A in equation (2). This imposes

the necessary restrictions in order to identify the contemporaneous relationships of the vari-

ables. In particular, it assumes higher ordered variables to have an immediate effect on

variables that are ranked below, but not vice versa. As CO2 is ordered first in all of our mod-

els, an exogenous shock to carbon dioxide in period t will have an immediate effect on all of

the other variables. The companion form of equation (A.1) is

YYYt = ccc + ΦYYYt−1 + A−1εεεt , (A.2)

where YYYt =
[

yt yt−1 · · · yt−p−1

]⊤
and the corresponding companion matrix is

Φ =



















A−1Ψ1 A−1Ψ2 · · · · · · A−1Ψp

I 0 0 · · · 0

0 I 0 · · · 0
...

...
. . .

...
...

0 · · · · · · I 0



















. (A.3)

An equivalent way (to what laid out in section 3.4) of constructing IRFs, i.e. the response

of variable i to a structural shock on variable j over all horizons h = 0, ..., H, is to proceed
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iteratively. Hence, for a given period h, the response of i to a shock hitting j is given by

IRF(j→ i, h) = eiΦ
h A−1
•,j (A.4)

where ei is a selection vector of dimension 1×M with 1 at entry i and 0 otherwise. A−1
•,j elicits

the jth column of A−1. Following Sims (2012), switching off the indirect effect of a shock to

variable j on i via variable z amounts to IRF(j→ z, h) = 0 ∀ h = 0, ..., H. That requires the

artificial shocks, εz,h, to be calibrated such that the response of variable z to a shock to variable

j is zero over the whole IRF period. Hence, at h = 1 the artificial shock εz,1 is

εz,1 = −
A−1

j,1

A−1
z,1

. (A.5)

As these shocks are transmitted through time, the artificial response εz,h has to account for

all the past shocks, εz,h−1, for any periods beyond h = 1:

εz,h = −
IRF(j→ z, h) + ∑

h−1
h′=0 ezΦh−h′A−1

•,j εz,h′

ez A−1
z

. (A.6)

The altered IRFs (that omits the transmission channel z) for all the variables in the model to

a shock to j is

IRF−z(j→ iii, h) = IRF(j→ iii, h) +
h

∑
h′=0

ezΦh−h′A−1
•,j εz,h′ . (A.7)

So far, we have reviewed how IRF decomposition works when one is interested in shut-

ting down a single channel at a time. In contrast to Sims (2012), our VAR comprises more

than three variables. Therefore, in some cases, it is desirable to shut-down not only one, but

a group Z ∈ M \ {i, j} of indirect channels. To do so, equations (A.5) and (A.6) need to be

generalized. At impact, the artificial response of variable z to a shock to j does not only have

to offset the direct effect of j, but also the indirect effect of a shock j via the indirect effect of all

the other artificial responses (εεε+
z+,1

) of those variables in Z which are ordered above z.35 This

amounts to the following extension of equation (A.5):

εz,1 = −

(

A−1
j,1

A−1
z,1

+
∑m∈z+ εm,1

A−1
z,1

)

. (A.8)

Also equation (A.6) has to be adjusted accordingly. However, at horizons h > 1 the artificial

35z+ denotes all those variables in Z which are ordered above z.
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response εz,h will not only have to offset the contemporaneous effects of z+, but also com-

pensate for the artificial responses of all other variables in Z over the period h′ = 0 · · · h− 1:

εz,h = −
IRF(j→ z, h) + ∑

h−1
h′=1 ezΦh−h′A−1

j εz,h′ + ∑
h−1
h′=1 ∑n∈Z εn,h′ + ∑m∈z+ εm,1

ez A−1
z

. (A.9)

Equation (A.7) for the modified IRF (IRF−z(j→ iii, h)) remains intact.
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A.3 Bayesian Estimation Details

Bayesian inference implies the use of priors, which degree of informativeness is usually

determined by the user. To be as agnostic as possible, we use the technique of Giannone

et al. (2015) to choose the tightness of priors as to optimally balance bias and variance in a

data-driven way.36 The prior structure, however, must be chosen. We estimate our bench-

mark Bayesian VARCTIC with a standard Minnesota prior. In this simple framework, Σ,

the variance-covariance matrix of the VAR residuals, is treated as known.37 Thus, the re-

maining parameters of the model reduce to the vectorized matrix β = vec
(

[

Φ111 · · ·Φppp c
]⊤
)

of dimension (M2p + M) × 1. The posterior distribution of β, π (β|y), is obtained by the

product of the likelihood function of the data f (y|β), and the prior distribution of β, π (β).

Hence, by sampling from the posterior distribution π (β|y) ∝ f (y|β)π (β) we can quan-

tify both the uncertainty around β, but also more interesting transformations of it, such

as IRFs and forecasts.38 The prior distribution for β is the multivariate normal distribution

π (β)∼ N (β0,Σ0). The Minnesota prior is a specific structure for values of both β0 and Σ0.39

In words, it allows concisely to parameterize heterogeneity in both the prior mean and vari-

ance. It consists of three major elements: the first one is about β0 and the last two concern

Σ0.

1. For any equation ym,t with m = 1, ...M – where M is the total number of observed vari-

ables in the VAR – all parameters are shrunk to 0 except for its first own lag ym,t−1.

The latter is usually shrunk to a value bAR between 0.5 and 1. This can be interpreted

as shrinking each VAR equation to the much simpler and parsimonious AR(1) pro-

cess. Given the persistent nature of time-series data, this structure for β0 is much more

appropriate than that of Ridge regression (or LASSO), which shrinks all coefficients

homogeneously towards 0.

2. It is often observed in multivariate time series models that ym,t−1 → ym,t will be way

stronger than almost any of the ym̃,t−1→ ym,t (with m̃ 6= m) relationships. λ2 therefore

calibrates the relative intensity of shrinking dynamic cross-correlations versus that of

autocorrelations.

3. Distant partial lag relationships (say ym,t−12→ ym,t) are expected to be of smaller mag-

nitude than close ones like ym,t−1 → ym,t, and ym,t−2 → ym,t. λ3 determines the addi-

36Setting priors’ tightness in such a way can be understood as analogous (at a philosophical level) to setting
tuning parameters using cross-validation in Machine Learning.

37This choice is motivated by the fact that it facilitates the optimization of hyperparameters. As it turns out,
optimizing tuning parameters has more impact on resulting IRFs and their respective credible regions than
treating Σ as unknown, when using for instance an Independent Normal Wishart (with Gibbs sampling).

38In the latter case, the credible region will naturally comprehend the uncertainty from the act of recursive
forecasting itself, but also the fact that it relies on unknown parameters that must be estimated.

39As a reference, a Ridge regression would imply β0 = 000 and Σ0 being a diagonal matrix with identical
diagonal elements.
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tional intensity of distant lags shrinkage.

The overall tightness of the prior apparatus is determined by λ1.40 To draw a parallel

to penalized regression (like Ridge and LASSO), a small λ1 in a Bayesian VAR increases

regularization in a way analogous to increasing the λRIDGE – that is, by pushing the BVAR

estimate Φ̂ away from Φ̂OLS. Following Giannone et al. (2015), we optimize/estimate hyper-

parameters within some grid and the total number of posterior draws is 2000. The optimal

values for VARCTIC 8 are {bAR,λ1,λ2,λ3} = {0.9,0.3,0.5,1.5}. We fix the number of lags in

VARCTIC 8 to P = 12 and to P = 3 in VARCTIC 18 respectively.

Finally, given the very smooth look of deseasonalized CO2 in Figure 1, one could worry

that it merely acts as a proxy for an omitted linear trend. We view the use of trends as un-

desirable in our multivariate setup as it would undermine the capacity of the VARCTIC to

be a "complete" model. Including a trend would make it rely on an unknown/unexplained

latent force – which is at odds with the main goal of our modeling strategy. For the sake

of completeness, we nevertheless estimate such models to find out that the inclusion of an

exogenous time trend is in fact not preferred by the data according to the Deviance Infor-

mation Criterion (DIC, a generalization of the well-known AIC). VARCTIC 8 has a DIC of

-6894.35 and adding an exogenous trend makes it -6817.32. The smallest value being pre-

ferred, this justifies on a data-driven basis the exclusion of the trend. While seemingly tech-

nical of point, this means the VARCTIC 8 system, based solely on dynamic relationships of

observable data, can generate/simulate the observed SIE downward path.

40For further details, explicit mathematical formulation of the prior and additional discussion on priors for
VARs, the reader is referred to (Dieppe et al., 2016).
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A.4 Different Ordering

In this section, we check the sensitivity of the responses of SIE to a shock of any of the other

variables when varying the ordering of variables compared to the benchmark VARCTIC 8 in

section 4. The priors and lags remain unaltered to the specification outlined in section A.3.

The ordering now reads: CO2, AT, SST, TCC, PR, SIE, SIT, Albedo.

Figure 7: IRFs: Response of Sea Ice Extent

A comparison of the responses of the benchmark VARCTIC 8 in Figure 3 and the IRFs

after reordering the model (Figure 7) documents the robustness of results to different identi-

fication schemes. A second – more radical – variation in the model set-up locates Albedo at

position two. Hence, a shock to Albedo will contemporaneously affect all the other variables

except CO2: CO2, Albedo, TCC, PR, AT, SST, SIE, SIT.
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Figure 8: IRFs: Response of Sea Ice Extent

For most of the effects, the shapes remain robust in comparison with Figure 3. Only the

response to air temperatures deviates visibly with the statistically significant impact in the

short-run now vanishing.
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Figure 9: Evolution of SIE different scenarios of CO2 in VARCTIC 18

A.5 Results of VARCTIC 18

VARCTIC 18, including all the variables in Table 1, tests the robustness of VARCTIC 8 pro-

jection of SIE. The ordering of variables in VARCTIC 18 reads as follows: SWGNT, SWTNT,

CO2, LWGNT, TCC, TAUTOT, PR, TS, AT, SST, LWGAB, LWTUP, LWGEM, SIE, Age, SIT,

EMIS and Albedo. Due to the increased number of variables, the lags were reduced to 3 and

the estimation period starts in 1984 due to some series unavailability. With more parameters

to estimate, the prior specification slightly tightens to {bAR,λ1,λ2,λ3} = {0.8,0.5,0.5,3}.

The forecasts of SIE under the specification of VARCTIC 18 are all reported in Figure 9.

This includes both the unconditional forecast and those conditional on RCP’s. The median

unconditional VARCTIC 18 forecast a blue Arctic in September 2062, which is in the very

neighborhood of VARCTIC 8. This result suggests VARCTIC 8 to comprise the key vari-

ables for a proper and robust long-run projection of Arctic sea ice. The projected ice-free

dates under the RCP 6 and RCP 8.5 scenarios are also consistent with the results reported by

VARCTIC 8 in Figure 5a. The trajectory of SIE under RCP 2.6, however, slightly changes and

seems to stabilize rather than recover by the end of the century.

The IRFs of SIE are shown in Figure 10. Those of key variables (as included in VARCTIC

18) remain roughly unchanged in VARCTIC 18. Most interestingly, in VARCTIC 18, not only

CO2 shock has the effect of triggering a durably decreasing SIE, but also LWGAB, which

measures the longwave radiation absorbed by the surface and AT. Many other shocks have

significant impacts in the short run but only CO2, LWGAB, and AT shocks have the unique

property of durably pushing the system out of the former equilibrium.
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Figure 10: IRFs: Response of Sea Ice Extent in VARCTIC 18. Shade is the 90% credible
region.
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A.6 Stochastic De-seasonalization

As a robustness check, we verify that our main results hold if we employ a radically different

technique to take out seasonality. In this subsection, we adopt the approach of structural

time series (Harvey (1990) and Harvey and Koopman (2014)) where yraw is split into three

somewhat intuitive parts:

yraw
t = µt + γt + ηt

a trend component µt; a seasonality component γt and a (possibly autocorrelated) noise

component ηt. Each of them is stochastic and has its own law of motion. The structure and

law of motions we use follow the well-established Harvey Basic Structural Model (Harvey

and Todd, 1983). The model reads as follows:

µt = µt−1 + βt + ut

βt = βt−1 + vt

γt = −
11

∑
m=1

γt−m + wt

(ηt,ut,vt,wt) ∼ iid N (0, Σ)

Σ =













σ2
ηη 0 0 0

0 σ2
uu 0 0

0 0 σ2
vv 0

0 0 0 σ2
ww













The law of motion is that of Harvey and Todd (1983) and fits in a traditional state space

model. The trend µt is a random walk with a stochastic drift. The drift βt is itself evolving

according to a random walk. For instance, this means that µSIE,t, the trend of SIE, is trending

down stochastically at a rate βSIE,t. That (negative) growth rate is itself allowed to evolve.

A quick look at a flexibly modeled trend of SIE suggests that allowing for a time-varying

growth rate is necessary given the acceleration and deceleration of SIE melting in the 2000’s.

Figure 11 shows the complete set of stochastic trends resulting from the BSM.

The extraction of trends as a first step and their subsequent modeling as a second step is

analogous to standard practice in macroeconomics, but not similar. In macroeconomics, it is

customary in a strand of empirical work to filter the data as a pre-processing step. The VAR
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Figure 11: Basic Structural Model: 8 Variables
Extracted Trends adjusted for average September-Seasonality
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Albedo

is then estimated on the extracted cycles, which is simply the difference of the raw data and

the estimated trend. Here, we are indeed doing the filtering step first but using trend com-

ponents – rather than seasonality and short-run noise – for the second step. However, our

trend components µt are rather stochastic with respect to what is usually seen in economics.

A.6.1 The Benchmark Specification and Results

Following Giannone et al. (2015), we obtain the optimal hyperparameters:

• Autoregressive Coefficient: = 1;
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• Overall tightness is λ1 = 0.3;

• Cross-variable weighting is λ2 = 0.5;

• Lag decay is λ3 = 1.51;

• Exogenous variable tightness: λ4 = 100;

The date of the zero-lower bound of the stochastic de-seasonalized version remains in the

neighborhood of the benchmark model. In this specification, the Arctic would be ice-free by

the year 2061.

Figure 12: Trend Sea Ice Extent
Stochastic De-seasonalization

As the BSM specification allows for evolving seasonality, we can also use it to obtain

more flexible month-specific VARCTICs. The benchmark specification implies that we can

transform our series into a string of "synthetic" Septembers or Marchs by simply adding or

subtracting a constant. In the evolving seasonality model, one can rewrite a slowly widening

seasonal pattern as the expression of heterogeneous trends across seasons. Thus, rather than

adding back the mean (over time) of γt,September to µt to fit the model on static synthetic

Septembers, we can add back

γ̃t,September =
T

∑
t′=1

I(t′ = t)γt′,September

to model evolving synthetic Septembers (or any month of interest). Unlike our benchmark

specification, this approach allows for summer vs non-summer months to have different

trends. Figure 15 reports results of our conditional forecasting analysis conducted for two
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Figure 13: IRFs: Response of Sea Ice Extent
Stochastic De-seasonalization

radically different months. While March’s SIE is linearly trending in-sample, the projections

suggest a potential acceleration of melting in the second half of the century – with widening

uncertainty.
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Figure 14: Evolution of SIE under different Scenarios of CO2

Different Scenarios
Stochastic De-seasonalization - Extracted trend adjusted for mean September-seasonality

Figure 15: Evolution of SIE under different Scenarios of CO2

Different Scenarios
Stochastic De-seasonalization:

Extracted trend adjusted for yearly September- & March-seasonality
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