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A simple unit root test consistent against any
stationary alternative

Frédérique Bec*and Alain Guay'

Abstract

This paper proposes t—like unit root tests which are consistent against any stationary
alternatives, nonlinear or noncausal ones included. It departs from existing tests in that it
uses an unbounded grid set including all possible values taken by the series. In our setup,
thanks to the very simple nonlinear stationary alternative specification and the particular
choice of the thresholds set, the proposed unit root test contains the standard ADF test
as a special case. This, in turn, yields a sufficient condition for consistency against any
ergodic stationary alternative. From a Monte-Carlo study, it turns out that the power of
our unbounded non adaptive tests, in their average and exponential versions, outperforms
existing bounded tests, either adaptive or not. This is illustrated by an application to interest
rate spread data.

Keywords: Unit root test, Threshold autoregressive model, Interest rate spread.

JEL classification: C12, C22, C32, E43.

1 Introduction

In the existing literature about unit root testing against non-linear threshold alternatives, what
differs across the proposed test statistics — beside the non-linear alternative model specification
— is basically the choice of the grid set of thresholds. To fix ideas, mainly two categories may be
distinguished: the bounded and unbounded sets of thresholds. Unlike the former, the boundaries
increase with the sample size for the latter. Within these two categories, two more classes can
be separated: the adaptive and not adaptive sets of thresholds. In this paper, we depart from
this existing work by considering an unbounded not adaptive set of thresholds which has the
particularity to choose its lower bound so as to make the test statistics match exactly the ADF
one. Thanks to this characteristic, it is consistent against any stationary process, either linear or
not, causal or non-causal. This desirable feature is also found by Bec, Guay and Guerre [2008a]

in a more sophisticated framework. Here, this is made possible by fixing all the parameters of
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the inner regime of a three-regime self-exciting threshold autoregression (SETAR) so that it is
characterized by a unit root process.

Why is this consistency property desirable? The test statistics developed here keeps good
power performance against models which are more difficult to estimate than our auxiliary sim-
plified SETAR model. Indeed, models such as e.g. Smooth transition Threshold AutoRegres-
sion, Autoregressive Conditional Root, Markov switching or non-causal models involve time-
consuming and tedious maximum likelihood techniques which are not necessary to estimate our
auxiliary model. Yet, the econometric theory underlying these models has been developed under
the maintained hypothesis of stationarity, but they are typically used to fit such variables as
e.g. the inflation rate, the real exchange rate or the crude oil price level which might reasonably
be suspected to be (close to) non stationary. As a consequence, there is a strong need for a
powerful unit root test before using these models.

Why is our test much more simple and powerful? First, it retains the idea developed in
Kapetanios and Shin [2006] — and before them by Balke and Fomby [1997], Michael, Nobay
and Peel [1997], Kapetanios, Shin and Snell [2003] — which imposes a unit root in the inner
regime of a three-regime SETAR model. As stressed by Kapetanios and Shin [2006], by imposing
a unit root in the inner regime, a test should gain power compared to the joint hypothesis Wald
test proposed in e.g. Bec, Ben Salem and Carrasco [2004] or Bec et al. [2008a]. Second, it is
simplified even more by considering symmetrical thresholds in the lower and upper regimes.
By imposing symmetrical thresholds and a lower bound of the set of thresholds which makes
the auxiliary model shrink to a standard autoregression, the test statistic obviously amounts
to the ADF one for this lower bound. Thirdly, by allowing a mirroring intercept in the outer
regimes under the stationary alternative, it does not require to de-mean the series in a first step,
as it can accommodate non centered series. This should also contribute to increase our test’s
power. Finally, this skeleton SETAR auxiliary model does not call for time-consuming ML or
EM estimation techniques since it can be estimated by piecewise OLS method.

The paper is organized as follows. We first introduce the new unit root test statistics and
derive its asymptotic behaviour. Then, Section 2 presents simulation experiments results to
compare its power to other classes of this kind of test. Section 3 illustrates the gain from this
new approach using the same interest rate spread data as the ones used in Bec et al. [2008a].

Section 4 concludes.



2 The consistent unbounded, not adaptive unit root test statis-
tics

As in Bec et al. [2008a], we are interested in testing the random walk null hypothesis:
Hy: Ay = a(L)Ay—1 + &4,

where yo = ... = y_p—1 = 0 and {&;} is a sequence of i.i.d. centered random variables with
variance o2 and 1 — a(L) is of known order p > 0 with roots outside the unit circle. Assume

that T' 4 1 observations yyg, ..., yr are available to test Hy against

Hy : {y:} is a non constant stationary ergodic process with a finite non vanishing variance.

The auxiliary test regression we propose to use for our unit root test is restricted to a symmetric
mirroring 3-regime dynamic TAR specification:

—p+pye—1 iy < A
Ayy = up + a(L)Ay—1 + : L
ve = e+ alL)Agis { ptpy—1 iy = A .

where {u;} is a sequence of i.i.d. centered random variables with variance o2 and a(L) is a
lag polynomial of order p. Note that in the middle, or inner regime, a random walk (without
drift) behavior is imposed, so that no specific parameter has to be estimated here. Beyond this
restriction, this auxiliary model is further simplified by assuming that i) the threshold defining
the lower regime (—\) is just the opposite of the one defining the upper regime (\) and i) the

1

intercept is symmetrical across regimes.” We focus on testing the null Hy : p = 0 against the

stationary alternative Hj : |p| < 0, using the following Student-t type Infinimum statistics:

i (Ar) = inf t2(3), (2)

with
tr(A) = pr(A)/s.e.(pr(}))

where pr is the piecewise ordinary linear least squares estimate of p and s.e.(pr) its standard
error. A Wald-type test statistic may be obtained via a similar route, as in Bec et al. [2008a] for
instance. The advantage of the t-test over the Wald-test is that the t-test deals with one-sided
stationary alternatives explicitly, and thus is expected to be more powerful. Moreover, beside

the auxiliary model under consideration, what distinguishes existing statistics of this kind is

'Note that this model does not generate zero-mean processes, so that unlike Kapetanios and Shin [2006], this
framework does not require to de-mean the data before proceeding to the test.



basically the choice of the set of thresholds Ay, as emphasized in the Introduction. Bec et al.
[2008a] develop both bounded and unbounded SupWald tests statistics for which the boundaries
of Ap are adaptive, in the sense that Ar is larger under the alternative than under the null
hypothesis. Bec et al. [2004]’s SupWald test statistic relies on an unbounded and not adaptive
set of thresholds: it consists in all values of y; lying between its 15" and the 85" quantiles,
following Andrews [1993] and the common practice since this seminal paper. Kapetanios and
Shin [2006] auxiliary test regression is similar to the one given in Equation (1) but it relaxes the
symmetry assumption: the autoregressive parameter is allowed to differ across the upper and
lower regimes.? So, their unit root null consists in setting both upper and lower autoregressive
roots to zero. The corresponding Sup (or average or exponential) Wald test statistics they
develop belong, by assumption, to the bounded, non adaptive class of thresholds sets.

The test statistics proposed here belongs to the same class as the one of Bec et al. [2004]
in that it retains a grid set that is unbounded and non adaptive. However, it departs from the
quantiles approach by considering a grid set including all the values taken by the series, with the
exception of the few points needed to estimate the outer regime. Hence, the set of thresholds
considered here is larger than the ones typically used in the quantile approach. More concretely,
denoting |y|), t = 0,...,T — 1, the ordered |y;—1], it amounts to consider the first value |y| o)
as the lower bound and the (T — 1 — k)" value as the upper bound, where T is the sample size

and k is the number of parameters to estimate in the outer regime, so that:

Ar = {lyl(o)s Yl (r=1-)]- (3)

Hence, the set of thresholds does not adapt its size to the null or the alternative under consid-
eration. Then, it is of course unbounded as its span widens with the sample size.
The Theorem 1 below shows that choosing |y|(0) as the lower bound of Ar is sufficient to get

consistency against any ergodic alternatives.

Theorem 1 Consider the TAR specification (1). Assume that A is such that, for any {y:} in
Hy, Ap = |yl(o) implies that t7(Ar) = ADFr. Then, under Hi, ti™f(Ag) diverges in probability,
with

i (Ar) < tr(Ap) = ADFp(1 4 0p(1)) . (4)

This directly results from the fact that the statistic ADFr diverges with exact order v/T in
probability for any {y;} in H; and the TAR specification (1) is equivalent to the autoregressive

2Moreover, as they de-mean the series before proceeding to test, u = 0 in their setup.



linear model when the threshold is Ay = |y](0).3 In this case, the lower and the central regimes
vanish and the SETAR shrinks to the auxiliary model of the ADF test:

Ay = a(L)Ay—1 + p+ pyi—1 + uz. (5)

Importantly, it follows from Theorem 1 that this definition of the grid set of thresholds is
a sufficient condition for consistency against any ergodic stationary alternative. Then, the
inequality (4) indicates that the tf}lf (A7) test can be more powerful than the ADF test provided

its critical values are close enough to the critical values of the ADFr statistic (see Table 2).

The next theorem shows that tf}"f (A7) has a pivotal null distribution. Let us first define for

the outer regime

1 Jo W (o)t (W()dv 1
Jo W ()L (W (0))dW (v) = g =entBriar= o (Lieoy = Lruon) (W(0))dW (v)

o(N) = 1/2 (6)

1 (Jd W), o) (W ()dv)®
Jo W2()Lig ) (W (v)) dv — 25 =ren B

where I; denotes the indicator function which takes value one if y, € I and zero otherwise.
Tout(N) = Ip(N) U I, (M), with Ip(\) = (—oo0, —A] and I,(A) = [\, +00).

Theorem 2 Consider the TAR specification (1). Let A1 be as in (3) and assume that Assump-
tion E(s) given in Section 7 of Bec et al. [2008a] for s > 4 holds. Then, under Hy, t?}f(AT)

converges in distribution to infycp (0(N/0)), which has a pivotal distribution.

Theorem 2 follows directly from Theorem 2 of Bec et al. [2008a] but without the inner regime.

We can see in particular that for Ay = |y]g),

c W ()dW (v) — W(1) [} W(v)dv
O(AT) - 1 1 1/2
[fo W2(v)dv — (J, W(U)dv)ﬂ

which is the limit distribution of the ADF statistic.

As in Kapetanios and Shin [2006], beside the infimum of the t statistic, its average and

exponential average defined below will also be considered:

AT fAT

) = g 3 00, 70 = S e ("57)

=1

where A7 is the number of points included in the grid set A7 and A; is the ith point of the

threshold parameters in Ap.

3See the proof of Theorem 4 in Bec et al. [2008a].



Theorem 3 Consider the TAR specification (1). Let Ar be as in (3) and assume that Assump-
tion E(s) given in Section 7 of Bec et al. [2008a] for s > 4 holds. Then, under Hy,

fo(Mo)
02) d\

1 1
t%vg(AT):/O Eo(N/o)d\ and teTrp(AT):>/0 exp< (7)

where = means convergence in distribution.

This result is directly obtained through the application of the continuous mapping theorem
(Pollard, 1984). Lines 3 to 5 of Table 2 in the Appendix give their empirical critical values for

different sample sizes.

3 Simulation experiments

In this section, the empirical size corrected power of various unit root tests is evaluated from
simulation experiments. First, we present the different tests under scrutiny and then, the various

alternatives used to compare their performances.

3.1 The competing unit root tests

Two very simple tests are considered as benchmarks : the ADF and the Kapetanios et al. [2003]
tVL test statistics. The latter has been developed to test the unit root null against a stationary
Exponential Smooth Transition AR (ESTAR) model — first introduced by Chan and Tong
[1986]. As these authors use a first-order Taylor series approximation of the ESTAR, they get

the simple auxiliary model below:
Ay = a(L)Ayi—1 + 0y | + . (8)

and the test statistic of the null 6 = 0 against § < 0 is simply given by tr n7 = or / s.e.(gT),
where d7 and its standard error are estimated by OLS. Then, our té?f (A7), t79(Ar) and t57° (A7)
tests are of course considered. For practical reasons, they are denoted tlelf , to7 and to;7 in the
tables below. The subscript “all” refers to the fact that all possible values of the threshold are
considered.

We find it useful to compare these new test statistics to their bounded analogues. To this
end, we use the same auxiliary model as the one given by Equation (1), but use the bounded

adaptive set of thresholds, A2 defined by Equation (2.9) of Bec et al. [2008a]:

~

OeT

{|DFr|

AP = [Ap, A7), with Ap = [yl + and \p = Ap + £6.7|DFr|, (9)
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with £ = 6. Note that the lower bound starts after |y|): this is needed in their approach to
estimate the inner regime’s parameters.® The statistics obtained likewise are denoted té”f , 600
and 7.

Next, so as to compare our proposed tests to another one belonging to the unbounded, non
adaptive class, we retain the approach described in Section 4, page 264, of Kapetanios and
Shin [2006] in order to build the set of threshold. The latter consists in equally spaced points
between the 10" percentile (lower bound) and the 90" percentile (upper bound). Unlike here,
these authors do not choose symmetric threshold in general. Hence, they have to estimate the
two thresholds which define the three regimes of their model. In their Monte-Carlo study, for
each of these two thresholds, they retain eight points between each boundary and the sample
mean, and they de-mean the series before proceeding to the unit root test. Since the thresholds
are symmetric in our auxiliary SETAR model, we adapt their approach by using a grid set which
also starts from the 10*" percentile and ends to the 90 percentile, but includes equally spaced
quantiles in between instead, so that: AY = {Q(0.10),Q(0.15),Q(0.2),...,Q(0.9)} where Q(-)
denote the quantile function of |y|.5 As in Kapetanios and Shin [2006], the simulated series are
de-meaned first. The corresponding t-statistics are denoted t;gf , tre? and i

Finally, in order to evaluate the impact of having developed a one-sided unit root test instead
of the two-sided SupWald statistics used when the inner root is not constrained to be unity, the
bounded Wald test proposed in Bec et al. [2008a] is also considered, both in its Sup, average
and exponential versions — W;"?, W% and W™ respectively.

All the tests are adjusted to match the number of lags introduced in the simulated DGP.
All experiments are based on 10,000 Monte Carlo replications. The first 100 realizations are
discarded so as to minimize the impact of initial conditions. The powers are empirical size
corrected and evaluated at the 5% nominal level. Table 2 in the Appendix gives the critical

values based on 40,000 simulations of different sample sizes.

3.2 Power analysis

The power of the tests listed in the first column of Table 2 is compared for various stationary
alternatives. The first one is the stationary three-regime SETAR model for which all the tests
have been built but the ADF and the ty7. Next, other non-linear stationary alternatives are

considered: the Exponential Smooth Transition AutoRegression (ESTAR), from which the ¢y,

4Results of the Bec et al. [2008a]’s unbounded set analogue are not reported, as the latter is found to be slightly
less powerful than the bounded one in most cases, as already noticed by these authors.

®Note that this approach is similar to the one developed by Bec et al. [2004], but it uses less points in the set
of thresholds.



statistic has been built, the Autoregressive Conditional Root (ACR) model developed by Bec,
Rahbek and Shephard [2008b] which is a dynamic mixture autoregression which does not require
a fixed threshold, and the Mixed causal-noncausal AutoRegression (MAR). Note that none of
the tests under study is built for the last two alternatives. Nevertheless, the bounded statistics
derived from Bec et al. [2008a] as well as the new test proposed here should keep power against
it as they have been shown to be consistent against all stationary alternatives. All the tables

reporting the results of this power analysis are gathered in the Appendix.

SETAR alternatives: The model defined by Equation (1) is studied first, using the same
set of parameters values as Bec et al. [2008a], as can be seen from Table 3. In particular,
uw=13x|p| x A and & is an ii.d. N(0,1). These values are inspired from Bec et al. [2004]
analysis of real exchange rate data. The first four parameter sets correspond to DGPs which
locate less than 5% of the realizations in the stationary upper and lower regimes. This explains
the bad performance of the ADF test, as most of the sample lies in the inner random walk band.
tnr does slightly better than the ADF when the root is close to unity, here when p = —0.1, which
amounts to a root of (1-p)=0.9. Then, comparing the other tests in these four cases, it appears
that ts is always outperformed by t.;, tp and Wj. So, the two adaptive tests are performing
rather well. As expected, t; is more powerful than W in the average and exponential versions.
Finally, the best performing test in these cases is the thlp . This is particularly remarkable in
the first and third lines of these results, where only 1.7 to 2.9% of the observations lie in the
stationary outer regime: it rejects the unit root null in 77.2% and 93.4% respectively. The
closest test in terms of power is the tgwp . The last two sets of parameters generate series with
more than 20% of realizations in the stationary regime. It is worth noticing that in these cases,
even with a root close to unity (9" and 10" lines), all tests have a rather high power, the ADF
included, with a rejection rate of 99.9% for T=200 and 100% for T=300. The last two lines of
Table 3 show that when enough observations belong to the stationary regimes and the root is

far from unity, then all the tests correctly reject the null in 100% of the cases.

ESTAR alternatives: The ESTAR DGP considered here is given by:

Yt = Ys—1 + Yyr—1(1 — eXP(9yt271)) +aly;_1 + &

with & ~ N(0,1). The rejection rates reported in Table 4, reveal more surprising results with
ESTAR alternatives than with SETAR ones. Indeed, even though the test statistic ¢y has

been built for this specific alternative, it is always dominated by other tests. In particular, when



0 is as small as 0.05 or 0.005, which corresponds to highly persistent series, our t,; test in its
average and exponential versions reach much larger rejection rates. For instance, line 2 of Table
4 where T=300 and ¢ = 0.005, ¢y, rejects the null in 18.8% of the replications while t7,7 and
thlp rejection rates are more than 64%. Note that the latter outperform ¢y in all the cases
considered. In the cases where ty behaves rather well, as for instance in the last four lines
of the table, even the ADF test performs better than it. Then, when # = 0.2, a case far from
the null, the ts, to; and ADF statistics produce comparable outcomes, close to 100% especially
for T=300. Finally, as for the SETAR alternatives, the one-sided version of Bec et al. [2008a]
bounded test statisitcs do better than the original Wald statistics, confirming the relevance of

the unit root constraint in the central regime.

ACR alternatives: Table 5 reports rejection rates of the various tests for ACR stationary

alternatives. The ACR model, proposed by Bec et al. [2008b], is given by:
Y= (L+p)"y—1 +aly1+&

with P(s; = 1|ly;—1,e) = [1 + exp(—(a + Blyi—1]/?t))]~" and &; ~ N(0,0). This model can
generate SETAR-like dynamics with the difference that the threshold does not need to be fixed.
Like them, we fix ¢ = 0.009 in our simulations. Again, to7 and t;,” keep a remarkably good
performance when a small percentage of the observations belong to the stationary regimes (first
and last four lines of the table), compared to the other tests considered. Only the t;, statistics
behave not too badly in these cases. Nevertheless, their performances deteriorate much more

than the ones of t7,7 and t¢,” when the outer root gets closer to unity (p = —0.1).

Noncausal alternatives: The power of our proposed test is also evaluated for the Mixed
causal-noncausal AutoRegressions (MAR) which have been shown to be a useful representation
for bubble-like dynamics as well as for macroeconomic variables such as inflation or interest
rates — see e.g. Lanne and Saikkonen [2011], Lof [2013], Lof and Nyberg [2017],Gouriéroux and
Zakoian [2017] or Fries and Zakoian [2019]. Hence, it seems to be able to capture some kinds of
nonlinearities. This MAR model is defined in Lanne and Saikkonen [2011] as

S(B)o(B™ )ye = e, (10)

where B is the backward shift operator (B*y; = y;_ for k = 0,+1,...) and ¢(B) = 1 —
»B—...—¢.B", o(B™Y) =1— B! — ... — p,B~%. Finally, ¢ is a sequence of zero-mean



non-Gaussian® independent, identically distributed random variables, and F(e?) < oo unless
otherwise mentioned. For the Monte-Carlo study, » = s = 1 and the forward, noncausal root,
@, is fixed to 0.5. A Student’s ¢t density function is assumed, f(e: | o, ) where o and v are the
scale and degrees of freedom parameters respectively. Following Lanne and Saikkonen [2011],
the scale parameter ¢ is fixed to 0.1. Two values of the degrees of freedom are considered:
v = 3 to generate fat-tailed distributed ¢;’s and v = 10 to generate mildly fat-tailed distributed
perturbations which look closer to Gaussian distribution than the case with v = 3. The causal
root values considered are ¢ € {0.7,0.9,0.95}. The results are gathered in Table 6 in the
Appendix. It can be seen that no matter the value of v, the ADF test’s empirical rejection rates
are 100% or so when ¢ = 0.7: The backward autoregressive root is far enough from unity for this
simple test to reject the null in all drawings or so. Note that the ¢,; and ¢y statistics perform
as well as the ADF in these cases. These three kinds of tests also perform well for ¢ = 0.9,
especially when T = 300. More interesting are the cases where ¢ = 0.95. Here, t,7 and t;"’s
rejection rates are still around 74% for T' = 200 and 88% for T' = 300 when v = 3, and around
59% for T = 200 and 74% for T' = 300 when v = 10. By contrast, both ADF, ¢y, t5, W} and,

to a lower extent, ts, powers drop dramatically.

To sum up this power analysis, it turns out that our unbounded non adaptive tests, in their
average and exponential versions, outperform existing bounded tests, either adaptive or not.
The only exception to this result occurs when a large proportion of the realizations of the DGP
belongs to the stationary regime of a SETAR or ESTAR model. However, the ADF test behaves

very well in these cases so that no more sophisticated test is needed.

4 Empirical illustration

Here, we examine the same interest rate spread data as the ones used in Bec et al. [2008a].”
Let Sg, Sa, Syz and Syg denote the 10-year vs 3-month bons spreads for France, Germany,
New-Zealand and the U.S. respectively. As can be seen from Table 4, p.109, in Bec et al. [2008a],
the standard ADF (or KPSS in the case of New-Zealand) tests suggest the presence of a unit
root in these series. So, this is the kind of cases where using more powerful tests could make a
difference. Indeed, from Table 5 of Bec et al. [2008a], it turns out that Wg“p rejects the unit
root at the 1%-level for Sy and Syg, at the 3.5%-level for Sg and at the 15%-level only for

SWith Gaussian distributed e;’s, the model could be written equivalently as a backward or a forward autore-
gression. In this case, these two representations are observationally equivalent asymptotically, as discussed in e.g.
Cambanis and Fakhre-Zakeri [1996].

"See the data description therein.
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Sr. We re-examine these results using exactly the same data and sample, and hence with the
same number of autoregressive lags in Eq. (1), namely p = 1 for France and Germany and p = 4

in New-Zealand and the US. As can be seen from Table 1, only the t.7 and t¢;” as well as all

Table 1: Unit-root tests for interest rate spread data

Sr Sa Snz Sus
fobs. 228 228 205 259
ADF 267 -1.89  -3.12 2.73
tnr,  -2.82  -3.56  -87.7 -145.48
il 267 -3.08  -3.99 -4.05
to  -1.55  -1.50 -2.72 -2.96
P 0.48  0.52 0.29 0.24
6 -2.64  -3.10 -4.05 -4.09
2% 154 -1.49  -2.74  -2.99
" 0.49  0.52 0.29 0.24
gl 267 <179 -3.21 -2.86
€99 205 -1.09  -2.70  -2.41
7 0.37 059 0.27 0.30

ks
WP 1096  15.42 52.16 30.07
Wy 543 9.47 12.48 17.37
WP 28.95 327.85 1.09-10° 1.10-10°

Notes: Numbers in bold denote rejection of the null at the 5%
level according to the corresponding critical values reported in
Table 2.

versions of t; test statistics reject the unit root null for the four series at the 5%-level. These
results illustrate two points stressed earlier in the paper, especially in the Monte-Carlo study.
First, the average and exponential versions of our unbounded and non adaptive t,;; tests reject
the null more often than the other tests. Second, the bounded Sup test developed by Bec et al.

[2008a] rejects the null less often than its one-sided version proposed here, namely tznf .

5 Conclusion

This paper proposes a new category of t—like unit root tests which are consistent against any
stationary alternatives, nonlinear ones included. It departs from existing tests in that it uses an
unbounded, not adaptive set of thresholds. In our setup, thanks to the very simple nonlinear

stationary alternative specification and the particular choice of the thresholds set, the proposed

11



unit root test contains the standard ADF test as a special case. This, in turn, yields a sufficient
condition for consistency against any ergodic stationary alternative.

Our proposed tests power is then evaluated from a Monte-Carlo study. As a result, our
unbounded non adaptive tests, in their average and exponential versions, outperform existing
bounded tests, either adaptive or not. This suggests that using t;,? and t; test statistics on top
of the simple ADF could prove very useful, especially for those series which may be suspected

to behave in a nonlinear or noncausal way.
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6 Appendix

Table 2: Critical values (40,000 replications)

T 100 200 250 300 400 500 1000 10000
ADF -2.89 -2.88 -2.88 -287 -2.87 -2.87 -2.87 -2.86
tyz  -2.89 -2.90 -2.94 -291 -293 -291 -293 -2.93
il 298 297 -2.97 -296 -2.97 -297 -296 -2.93
to?  -091 -0.85 -0.81 -0.80 -0.77 -0.74 -0.65 -0.38
to 067 069 070 070 071 072 075 0.85
"/ 247 254 255 -258 -2.61 -2.62 -2.65 -2.67
t,Y  -0.93 -097 -099 -1.00 -1.06 -1.08 -1.23 -1.79
t,”  0.65 064 0.63 063 061 060 056 0.42
"/ 290 -2.87 -287 -2.85 -2.85 -2.84 -2.82 -2.52
tpod  -2.32 -2.09 -2.02 -195 -1.85 -1.77 -1.53 -0.80
tp’ 033 037 039 040 042 044 050 0.71
WP 14.32 14.36 14.34 1443 1445 14.35 14.47 14.58
Wy 622 615 623 624 635 645 6.70 7.47
W, 8432 71.52 68.73 66.15 67.20 65.94 67.09 76.72
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Table 3: Empirical rejection rates against SETAR alternatives (10,000 replications)

(A a,p1) T % ADF tyg 0] %9 57 gn 9 g g e g oW Wi W
(10,0-0.1) 200 29 173 293 264 722 772 394 587 59.6 17.8 219 228 625 482 59.2
300 2.9 201 386 41.6 917 930 53.1 785 79.0 206 251 262 834 668 80.2

(10,0,-0.3) 200 1.7 21.7v 712 554 927 934 71.0 89.3 894 223 300 31.7 90.0 814 89.2
300 1.5 285 86.6 76.7 984 985 856 96.6 965 294 416 450 971 929 96.6

(10,0.3,-0.1) 200 4.0 175 424 432 935 951 60.2 86.6 87.0 18.0 17.1 17.5 854 722 832
300 39 234 687 649 99.1 994 79.2 977 979 236 170 165 970 914 96.1

(10,0.3,-0.3) 200 2.3 36.8 93.0 87.1 99.2 993 935 98.6 98.5 383 43.7 464 984 970 983
300 21 749 991 981 999 100 989 999 999 753 712 732 998 996 99.8

(2,0.3,-0.1) 200 41.7 99.9 91.8 99.9 97.7 951 95.6 949 88.6 99.9 99.9 99.9 96.6 83.0 96.3
300 41.6 100 982 100 99.7 985 995 99.0 95.6 100 100 100 100  99.8 100

(2,0.3,-0.3) 200 240 100 100 100 100 100 100 100 100 100 100 100 100 100 100
300 239 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: The DGP is Equation (1) with p = 1.3 x |p| x A and e; ~ N (0,1). The column labeled % reports the percentage of data in the stationary
regimes.
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Table 4: Empirical rejection rate against ESTAR alternatives (10,000 replications)

(1.0.6) TOADE o o i e g g7 gl Y gr Wit wpe wy
(-0.1,0,0.005) 200 116 11.7 174 37.8 395 262 235 203 121 139 142 11.5 5.9 8.8
300 155 184 273 64.3 64.0 350 33.7 270 16.1 19.3 19.7 177 8.0 14.4
(-0.1,0,0.05) 200 36.6 435 549 &86.8 87.1 59.6 752 71.0 385 481 499 31.1 17.8 259
300 788 T4.7 874 96.6 96.2 76.3 885 84.8 80.5 89.6 91.2 554 385 5H2.0
(-0.1,0,0.2) 200 728 615 779 873 86.6 66.1 779 733 746 83.0 839 43.6 26.6 38.8
300 98.3 85.7 983 96.1 949 825 &89.1 84.7 98.6 99.6 99.7 788 56.6 75.2
(-0.1,0.3,0.005) 200 17.4 226 29.8 57.2 587 39.7 369 30.3 181 14.1 13.7 195 105 15.8
300 31.6 432 509 854 85.0 54.1 574 478 326 254 249 339 195 299
(-0.1,0.3,0.05)) 200 77.0 754 85.1 945 943 779 88.1 845 783 76.5 770 546 404 51.5
300 99.0 943 995 994 993 916 969 948 99.1 99.1 99.2 86.6 T76.5 86.2
(-0.1,0.3,0.2) 200 952 809 958 93.8 92.v 80.0 872 829 956 96.2 96.3 Tv1.1 52.1 67.3
300 100 95.1 100 98.8 98.0 92.8 957 92.6 100 100 100 970 87.8 964

Notes: The DGP is y: = y¢—1 + yye—1(1 — exp(Qy7_1)) + aAy;—1 + &, with e, ~ N (0, 1).
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Table 5: Empirical rejection rates against ACR alternatives (10,000 replications)

(o, B, a, p) T % ADF tygp t77 @9 & ¢inf oo qemp o gind oy qemp ygsup yyavg o yyerp
(-10,30,0.3,-0.3) 200 4.5 281 723 61.0 97.6 981 749 94.1 93.7 29.0 274 278 729 645 712
300 44 612 925 895 99.8 99.8 903 989 98.8 624 603 629 918 8.1 920
(-10,30,0.3,-0.1) 200 8.0 14.8 21.9 26.8 582 60.4 387 39.6 339 154 13.0 126 248 132 224
300 79 223 413 46.0 89.0 89.7 554 63.7 555 229 185 183 424 315 399
(-20,120,0.3,-0.3) 200 19.5 100 99.9 100 100 100 100 100 100 100 100 100 100 100 100
300 194 100 100 100 100 100 100 100 100 100 100 100 100 100 100
(-20,120,0.3,-0.1) 200 35.1 89.3 81.9 945 97.1 96.3 88.2 93.3 883 90.3 90.8 91.5 69.9 57.3 679
300 35.0 998 96.2 999 99.8 993 970 984 95.7 999 999 100 959 89.1  96.0
(-10,30,0,-0.3) 200 3.7 145 333 293 834 860 456 69.9 69.2 154 21.3 228 418 292 376
300 3.5 221 563 508 96.8 972 64.1 889 88.0 233 325 353 626 487 598
(-10,30,0,-0.1) 200 6.3 10.7 13.0 149 28.1 313 231 181 165 114 15.0 159 13.3 9.3 11.7
300 6.2 145 183 235 61.0 61.1 329 288 245 152 19.7 20.8 21.3 1331 185

Notes: The DGP is y = (1 + p)*tyi—1 + aAyi—1 + &, with P(s, = 1|ye—1,¢€¢)

labeled % reports the percentage of data in the stationary regimes.

= [1 + exp(—(a + Blyi—1]*?t))] ™" and &; ~ N(0,0.009). The column
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Table 6: Empirical rejection rates against MAR alternatives (10,000 replications)

(o) T ADE typ ul g wmw il e g gl g wew e e
(3,0.7) 200 999 99.1 99.9 99.8 99.8 96.1 982 97.3 99.9 100 100 &7.6 82.8 85.4
300 100 99.9 100 100 100 99.5 99.8 99.7 100 100 100 99.0 97.7  98.6

(3,0.9) 200 717 76.2 737 935 93.8 663 70.8 652 749 90.0 925 552 36.2 48.0
300 969 921 96.7 985 98.6 828 819 776 97.7 99.7 999 781 57.1 710

(3,0.95) 200 26.2 38.7 30.2 733 742 384 337 277 284 39.6 433 273 135 221
300 53.1 59.8 54.0 879 89.0 515 399 33.7 56.1 713 754 442 21.7 349

(10,0.7) 200 100 96.0 100 99.3 994 89.6 90.0 86.6 100 100 100 69.1 43.0 59.6
300 100 99.7 100 100 100 976 973 943 100 100 100 949 783 919

(10,09) 200 735 570 73.0 81.8 829 472 36.5 320 764 886 90.0 36.6 8.8 23.7
300 972 795 966 925 925 60.3 443 346 979 99.7 998 644 19.2 488

(10,0.95) 200 28.8 27.1 31.0 583 59.7 29.8 155 12.6 31.3 40.0 40.8 20.4 3.6 11.6
300 55.6 443 556 743 746 386 153 9.6 585 698 71.8 35.6 6.0 21.6

Notes: The DGP is (1 — ¢B)(1 —0.5B™ "y, = 0.3 + &, with g, ~ t(v,0), where v € {3,10} is the degree of freedom and o = 0.1 is a scale parameter.



